-
公开(公告)号:CN112101523A
公开(公告)日:2020-12-18
申请号:CN202010857268.2
申请日:2020-08-24
Applicant: 复旦大学附属华山医院
Inventor: 耿道颖 , 于泽宽 , 陈泓亦 , 张军 , 尹波 , 李郁欣 , 吴昊 , 曹鑫 , 张海燕 , 胡斌 , 潘嘉炜 , 鲍奕仿 , 周书怡 , 陆怡平 , 耿辰 , 夏威 , 杨丽琴
Abstract: 本发明提供了一种基于深度学习的CBCT图像跨模态预测CTA图像的卒中风险筛查方法和系统,包括:步骤1:构建循环对抗性生成网络模型;步骤2:通过CBCT图像及其对应的造影图像数据训练循环对抗性生成网络模型;步骤3:将测试图像输入至已训练好的循环对抗性生成网络模型,生成血管造影CT图像;步骤4:根据血管造影CT图像中颈动脉的形态、颈动脉狭窄程度及弯曲度预测卒中风险。本发明基于深度学习模型,将非增强CBCT图像转换为增强CT血管造影图像,进行颈动脉血管分割提取,量化计算颈动脉狭窄程度和弯曲度,进而预测脑卒中风险,为临床获取CTA图像及诊断提供了一种便捷、经济、高效的新途径。
-
公开(公告)号:CN111415324B
公开(公告)日:2024-03-08
申请号:CN201910737818.4
申请日:2019-08-09
Applicant: 复旦大学附属华山医院
IPC: G06V10/764 , G06T7/136 , G06T7/00
-
公开(公告)号:CN111415324A
公开(公告)日:2020-07-14
申请号:CN201910737818.4
申请日:2019-08-09
Applicant: 复旦大学附属华山医院
Abstract: 本发明属图像处理及应用技术领域,具体涉及一种基于磁共振成像的脑病灶图像空间分布特征的分类鉴别方法。本发明方法主要包括病灶分割、个体图像配准、空间标准化、标准空间模板个体化、病灶空间分布特征提取、特征筛选及建模等步骤,核心是通过在个体空间和标准空间的病灶的多种特征分析,构建一套脑病灶图像空间分布特征集的分析方法、并在此基础上使用机器学习进行特征筛选和建模。本方法可用于使用脑磁共振影像进行不同抗体、不同基因等原因导致的不同脑疾病或脑状态的脑病灶图像分类鉴别,为临床及科研提供有效的指导。
-
-