上消化系统静脉血管分割方法、装置、设备及存储介质

    公开(公告)号:CN118537349A

    公开(公告)日:2024-08-23

    申请号:CN202410671407.0

    申请日:2024-05-28

    Abstract: 本发明涉及医疗图像处理技术领域,公开了一种上消化系统静脉血管分割方法、装置、设备及存储介质,用于解决现有技术中上消化系统静脉血管分割方法无法关注血管连通情况,导致血管分割结果不准确的技术问题。该方法包括:获取上消化系统在门脉期的待识别增强CT图像并输入图像编码器中进行特征提取,得到图像特征数据;调用血管注意力模型对提取到的图像特征数据进行过滤,得到增强管状结构的第一血管特征数据;将第一血管特征数据输入空间注意力模型中通过空间注意力模型的多层结构进行血管感知,输出血管感知后的第二血管特征数据;将第二血管特征数据通过输入图像解码器进行上采样处理得到最终的血管分割结果,并进行血管分割结果标注。

    一种基于深度学习的多模态门脉高压无创评估系统

    公开(公告)号:CN118452961A

    公开(公告)日:2024-08-09

    申请号:CN202410701671.4

    申请日:2024-05-31

    Abstract: 本发明公开了一种基于深度学习的多模态门脉高压无创评估系统,其特征在于,包括:2D骨干网络分支以及3D骨干网络分支;两个多尺度感知模块;分类头。本发明使用深度学习模型,结合CT和内镜影像多模态数据,无创评估门脉压力,提高预测精度,实现更有效的临床决策,满足多层面医疗条件管理需要。与现有技术方案相比,本发明具有如下优点:通过深度学习,完成端到端的门脉压力无创评估。避免传统影像组学过程中手动设计的特征,和过多人为设定的超参数,缩短流程,提高诊断效率;结合CT和内镜图像两种模态。内镜检查能直观呈现食管和胃静脉曲张程度,与门静脉压力和预后密切相关。结合CT和内镜图像,提高模型的准确性。

    一种基于深度学习的腹部肌肉标注方法及装置

    公开(公告)号:CN109671068B

    公开(公告)日:2022-09-13

    申请号:CN201811531746.X

    申请日:2018-12-14

    Abstract: 本发明涉及一种基于深度学习的腹部肌肉标注方法及装置。所述方法包括以下步骤:收集包含第三腰椎的腹部CT影像数据;标注第三腰椎位置及肌肉群位置,四个肌肉群区域分别标记为1、2、3、4,其他区域标记为0,生成与原始CT影像对应的标签影像,标签影像中每个像素的值为{0,1,2,3,4}中的一个;利用已标注的CT影像训练分割模型,所述分割模型实现将CT影像中的像素分为5类,分别对应第二步中的标签0、1、2、3、4;分割肌肉群,得到影像中每个像素位置对应的标签预测;基于肌肉群分割结果,计算肌肉面积及肌肉的影像组学特征。所述装置包括实现所述方法的相关模块。利用本发明可简便、快捷、准确地提取与营养评估相关的参数。

    一种基于机器学习的门脉高压无创评估方法及系统

    公开(公告)号:CN113658700A

    公开(公告)日:2021-11-16

    申请号:CN202110938393.0

    申请日:2021-08-16

    Inventor: 黄晓铨 陈世耀

    Abstract: 本发明涉及一种基于机器学习的门脉高压无创评估方法及系统,属于医学图像处理技术领域。方法包括:S1:获取门脉高压症的图像数据并对所述图像数据进行预处理;S2:对预处理后的图像数据运用卷积神经网络进行病灶区域分割,得到门脉高压病灶区域;S3:对所述门脉高压病灶区域进行影像组学特征提取和特征矩阵构建,采用集成学习训练多个基础分类器,得到门脉高压无创评估模型;S4:调用所述门脉高压无创评估模型,对待评估的图像数据进行评估,输出门脉高压无创评估结果。本发明具有较高的灵敏度和准确性,可以帮助指导PH患者的快速诊断,进而缩短PH患者的治疗时间,具有较好的临床实用性。

    一种基于深度学习的腹部肌肉标注方法及装置

    公开(公告)号:CN109671068A

    公开(公告)日:2019-04-23

    申请号:CN201811531746.X

    申请日:2018-12-14

    Abstract: 本发明涉及一种基于深度学习的腹部肌肉标注方法及装置。所述方法包括以下步骤:收集包含第三腰椎的腹部CT影像数据;标注第三腰椎位置及肌肉群位置,四个肌肉群区域分别标记为1、2、3、4,其他区域标记为0,生成与原始CT影像对应的标签影像,标签影像中每个像素的值为{0,1,2,3,4}中的一个;利用已标注的CT影像训练分割模型,所述分割模型实现将CT影像中的像素分为5类,分别对应第二步中的标签0、1、2、3、4;分割肌肉群,得到影像中每个像素位置对应的标签预测;基于肌肉群分割结果,计算肌肉面积及肌肉的影像组学特征。所述装置包括实现所述方法的相关模块。利用本发明可简便、快捷、准确地提取与营养评估相关的参数。

    一种基于深度学习的多任务CT图像分类方法

    公开(公告)号:CN118941876A

    公开(公告)日:2024-11-12

    申请号:CN202411142137.0

    申请日:2024-08-20

    Abstract: 本发明提出一种基于深度学习的多任务CT图像分类方法,用于门脉高压患者腹部对比增强CT多种病况进行端到端分类,减少影像科医生负担,智能辅助诊断。该方法基于深度学习的影像组学特征,无需经历传统影像组学冗长的流程,无需花费大量的人力进行手工标注。端到端的图像分类能提高效率,节省人力成本。该方法不管是二分类任务还是多分类任务,一个模型只能完成一项指标的判断。多标签分类任务可以使用一个模型同时完成多项指标的判断。该方法建立多标签分类任务,后续可以根据临床需求增加病况指标,临床应用前景巨大。该方法基于Transformer是大语言模型的基本架构,后续可以加入病理、报告文本等模态,构建医学大模型。

    一种基于机器学习的门脉高压无创评估方法及系统

    公开(公告)号:CN113658700B

    公开(公告)日:2023-10-27

    申请号:CN202110938393.0

    申请日:2021-08-16

    Inventor: 黄晓铨 陈世耀

    Abstract: 本发明涉及一种基于机器学习的门脉高压无创评估方法及系统,属于医学图像处理技术领域。方法包括:S1:获取门脉高压症的图像数据并对所述图像数据进行预处理;S2:对预处理后的图像数据运用卷积神经网络进行病灶区域分割,得到门脉高压病灶区域;S3:对所述门脉高压病灶区域进行影像组学特征提取和特征矩阵构建,采用集成学习训练多个基础分类器,得到门脉高压无创评估模型;S4:调用所述门脉高压无创评估模型,对待评估的图像数据进行评估,输出门脉高压无创评估结果。本发明具有较高的灵敏度和准确性,可以帮助指导PH患者的快速诊断,进而缩短PH患者的治疗时间,具有较好的临床实用性。

Patent Agency Ranking