-
公开(公告)号:CN118606784A
公开(公告)日:2024-09-06
申请号:CN202410695875.1
申请日:2024-05-31
Applicant: 国网智能电网研究院有限公司
IPC: G06F18/241 , G06F18/213 , G06F18/2113 , G06N3/0455 , G06N5/01 , G06N20/20
Abstract: 本发明专利申请提供了一种基于多维度关联关系的变压器健康状态评估方法和系统,包括:采集目标变压器及其相邻变压器的状态量数据,并构建多变压器状态量矩阵;基于目标变压器及其相邻变压器的状态量数据,计算每个变压器的状态量数据间的关联关系;基于多变压器状态量矩阵结合每个变压器的状态量数据间的关联关系,计算目标变压器及其相邻变压器间的多维度关联关系;基于目标变压器及其相邻变压器间的多维度关联关系,通过变压器健康状态评估模型,得到目标变压器的健康状态等级;本发明提取了目标变压器和相邻变压器的窗口状态量数据,从多个维度得到目标变压器与相邻变压器质检的深度关联关系,进而能够综合评价目标变压器的健康状态。
-
公开(公告)号:CN117370788A
公开(公告)日:2024-01-09
申请号:CN202311227994.6
申请日:2023-09-21
Applicant: 国网智能电网研究院有限公司 , 国家电网有限公司
IPC: G06F18/2132 , G06F18/21 , G06N3/0455 , G06F123/02
Abstract: 本发明涉及时序数据处理技术领域,具体涉及一种电网时序数据预训练及预测方法、装置、预训练模型。预训练方法包括:获取预设时间段的电网时序数据划分得到历史时序数据和未来时序数据;将历史时序数据和未来时序数据进行掩码;将掩码历史时序数据输入至编码器学习,得到重建历史时序数据和历史时序特征;将历史时序特征和掩码未来时序数据输入至解码器预测,得到预测未来时序数据;采用预设损失函数计算历史时序数据和重建历史时序数据以及未来时序数据和预测未来时序数据的损失,实现对编码器和解码器参数的优化。通过实施本发明,基于编码器和解码器的重建与预测联合优化,达到了预训练和微调的一致性。提升模型针对时序数据的预训练效果。
-
公开(公告)号:CN115967652B
公开(公告)日:2025-02-14
申请号:CN202211407587.9
申请日:2022-11-10
Applicant: 国网安徽省电力有限公司超高压分公司 , 国网智能电网研究院有限公司
Inventor: 郭振宇 , 石永建 , 郭龙刚 , 王旗 , 杜鹏 , 章海斌 , 马欢 , 甘津瑞 , 汪运 , 翁凌 , 马凯 , 张军 , 夏卫尚 , 燕亭 , 常文婧 , 樊振东 , 潘军 , 常珂
IPC: H04L43/0852 , G06F18/214 , G06N3/0442 , G06N3/048 , G06N3/08 , H04L41/147 , H04W24/02 , H04W24/08
Abstract: 本发明公开了一种特高压系统无线通信网络时延优化控制方法及装置,所述方法包括:采集特高压系统时延数据;对时延数据归一化处理,构建训练集和测试集;构建基于注意力机制的LSTM神经网络预测模型;训练LSTM神经网络预测模型;k时刻根据LSTM神经网络预测模型输出的时延预测值选取上一时刻控制增量,根据控制增量与上一时刻的控制输入得出当前时刻的控制输入,将当前时刻的控制输入作为特高压系统的输入;本发明的优点在于:时延预测值精准度高,鲁棒性强,能够输出最优信息,满足特高压网络通信一体化运维对安全和智能化程度的实际需求。
-
公开(公告)号:CN118279289B
公开(公告)日:2024-08-27
申请号:CN202410572037.5
申请日:2024-05-10
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
IPC: G06T7/00 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/086
Abstract: 本发明提供一种电力设备视频图像缺陷识别方法及系统,方法包括:预训练初始残差神经网络,以得到适用缺陷分类残差神经网络;初始化问题潜在解粒子群位置、速度;计算每个问题潜在解粒子的适应值;利用粒子群优化算法持续迭代,寻获并更新得到局部更新最优解、全局更新最优解,以更新获取问题潜在解粒子的位置、速度;在满足粒子群优化算法的结束条件时结束持续迭代,根据更新获取的问题潜在解粒子的位置、速度,输出最佳位置参数,以利用适用缺陷分类残差神经网络,处理得到电力设备视频图像中的缺陷坐标位置。本发明解决了电力设备视频图像缺陷识别过程中的标记操作效率低、准确性低、检测模型的计算量大、网络结构复杂的技术问题。
-
公开(公告)号:CN118154995A
公开(公告)日:2024-06-07
申请号:CN202410572033.7
申请日:2024-05-10
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82
Abstract: 本发明提供基于时频关联自适应学习模型的图像质量裂化评估方法,包括:构建不同类别的原始图像集;利用傅里叶变换获得频谱图像集;将频谱图像和原始差异类别图像输入到残差神经网络中学习频谱图像特征、原始图像特征;将时频关联的图像特征、原始图像特征融合;输入到动态调节参数BP神经网络;进行图像质量裂化评估分类。本发明解决了分析处理信息不全面,导致图像质量异常分类效果差的技术问题。
-
公开(公告)号:CN117829265A
公开(公告)日:2024-04-05
申请号:CN202410232948.3
申请日:2024-03-01
Applicant: 国网智能电网研究院有限公司 , 国家电网有限公司
Abstract: 本发明涉及知识迁移技术领域,具体涉及一种基于中介空间构建的电力跨模态双向知识迁移方法。方法包括:采用图建模和图神经网络提取第一模态数据的第一特征,采用大语言模型提取第二模态数据的第二特征;基于第一特征和第二特征的相似度以及对应的损失函数构建中介空间;采用中介空间中的损失函数对图神经网络和大语言模型中的参数迭代优化;基于图建模、参数迭代优化后的图神经网络以及大语言模型提取的特征在中介空间中进行知识迁移。通过该方法在中介空间里对齐不同模态抽取到的关系特征,实现了不同模态数据之间的双向知识迁移。
-
公开(公告)号:CN116229064A
公开(公告)日:2023-06-06
申请号:CN202310057013.1
申请日:2023-01-14
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
Abstract: 本发明属于变电站远程巡视的技术领域,公开了压力表图像像素清晰度评估方法,包括如下步骤:S1、通过采集设备对SF6压力表进行图像数据采集;S2、对步骤S1中的图像数据进行清晰度指标部署;S3、计算SF6压力表在图像中占据的像素点个数和最小像元密度量以评估图像的清晰度。本发明解决了智能电网存在表计图像的清晰度不足的问题,可实现变电站的实时在线监测。
-
公开(公告)号:CN116052173A
公开(公告)日:2023-05-02
申请号:CN202310031759.5
申请日:2023-01-10
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
Abstract: 本发明公开了可辨识的油位计图片像素清晰度判定方法,涉及图像视觉技术领域,其技术方案要点是:S1:通过采集设备对油位计图片进行数据采集;S2:对所拍摄油位计进行识别;采用基于U2NET的语义分割的深度学习识别算法对所拍摄油位计进行识别;S3:统计油位计图片的像素点个数,推算出图像像素与成像清晰度之间的关系;S4:推算出焦距与被拍摄油位计距离的关系。通过关系式有效便捷的计算相应指标,并以此作为深度学习清晰度划分的依据。对摄像头预设点位进行清晰度评估,确保摄像头安装后,能够对被监测油位计进行有效识别。减少工作人员负担,推动智能电网的实施,保障了用户和电力公司双方的切身利益。
-
公开(公告)号:CN115577116A
公开(公告)日:2023-01-06
申请号:CN202211101285.9
申请日:2022-09-09
Applicant: 国网安徽省电力有限公司超高压分公司 , 国网安徽省电力有限公司 , 国网智能电网研究院有限公司 , 合肥工业大学 , 中国电力科学研究院有限公司 , 国网河南省电力公司电力科学研究院
Inventor: 刘鑫 , 常文婧 , 甘津瑞 , 常珂 , 刘浩 , 韩兆刚 , 夏卫尚 , 邱欣杰 , 谢涛 , 陈庆涛 , 马欢 , 黄海宏 , 孙伟 , 梁娟娟 , 李坚林 , 杜君莉 , 尚守卫
Abstract: 本发明公开一种融合多参量数据分析的时序图建模方法及装置,所述方法包括:获取换流变的多源信息,多源信息包括工况运行数据和多源传感数据;将多源信息经词向量模型转换得到对应的语义特征向量;将各语义特征向量以及各语义特征拼接得到的拼接特征向量分别进行线性变换,以将多源信息变换至公共特征空间;基于邻接矩阵权重随节点特征自适应变化的知识图谱技术,对各语义特征向量经线性变换后的特征值进行处理,得到不同时刻多源信息对应的知识图谱;基于时序图注意力神经网络,对不同时刻多源信息对应的知识图谱进行处理,分析多源信息的变化规律。
-
公开(公告)号:CN118155024B
公开(公告)日:2024-08-20
申请号:CN202410585235.5
申请日:2024-05-13
Applicant: 国网安徽省电力有限公司电力科学研究院 , 安徽大学 , 国网智能电网研究院有限公司
IPC: G06V10/774 , G06V10/30 , G06V10/34 , G06V10/72 , G06V10/764 , G06V10/82 , G06N3/0475 , G06N3/045 , G06N3/094 , G06N3/0464
Abstract: 本发明提供大模型图像样本自动生成方法及系统,方法包括:采集电网设备的差异光谱图像数据,以作为原始数据,对原始数据进行形态学滤波操作、数据清洗操作以及数据整合操作,以得到模型训练输入数据;利用生成对抗网络GAN进行对抗操作,对模型训练输入图像数据进行训练,以进行样本生成以及样本评估操作,获取稀缺样本;将稀缺样本与实时采集图像混合,利用支持向量机进行标注处理,以构造适用泛化能力新数据集;利用迁移学习技术,在适用泛化能力新数据集上,对预训练ResNet模型进行训练、验证操作,以得到适用电网图像大模型。本发明解决了电网设备监测与诊断操作中存在样本稀缺,导致模型的监测诊断性能受有制约的技术问题。
-
-
-
-
-
-
-
-
-