-
公开(公告)号:CN114355240A
公开(公告)日:2022-04-15
申请号:CN202111451134.1
申请日:2021-12-01
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
IPC分类号: G01R31/52 , G06V10/774 , G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
摘要: 本发明提供一种配电网接地故障诊断方法及装置,包括:获取配电网的基础拓扑结构故障时的一维零序电流信号,并将一维零序电流信号转换为二维图像;以所述二维图像作为卷积神经网络模型的输入,训练得到基础故障诊断模型;在配电网发生故障时,判断发生故障的拓扑结构是否为基础拓扑结构:若是,则利用基础故障诊断模型对配电网进行故障诊断,输出对应的故障类型;否则,基于基础故障诊断模型,利用迁移学习方法,得到该发生故障的拓扑结构对应的目标故障诊断模型,并利用该目标故障诊断模型对配电网进行故障诊断,输出对应的故障类型。本发明的配电网接地故障诊断方法能够实现不同拓扑结构的故障分类,运用范围广,故障分类快速,准确率高。
-
公开(公告)号:CN114077846A
公开(公告)日:2022-02-22
申请号:CN202111198766.1
申请日:2021-10-14
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
摘要: 本发明的一种基于RF‑LSTM的故障电流多域识别方法及存储介质,其中方法包括以下步骤,针对电弧故障平台,获取原始电流信号;对原始电流信号进行处理,进行核主成分分析提取第三主成分,然后对第三主成分信号进行时域、频域和能量域特征提取;接着用随机森林进行无偏预测重要性估计选择对应负载条件下的高相关特征;最后将筛选后的特征用作LSTM的特征输入,用于学习和训练,实现对故障电弧的多域识别。本发明的方法减少了计算量并且提高了检测速度和精度;结果表明,此方法可以准确的识别电弧故障。
-
公开(公告)号:CN112051480A
公开(公告)日:2020-12-08
申请号:CN202010783864.0
申请日:2020-08-06
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
IPC分类号: G01R31/08
摘要: 本发明的一种基于变分模态分解的神经网络配电网故障诊断方法及系统,首先,采用变分模态分解方法分析了继电保护点零序电流的故障暂态信号特征。然后根据由变分模态分解得到的内禀模态函数(Intrinsic Mode Function,IMF),选取故障特征较多的IMF分量,通过Hilbert‑Huang变换提取故障特征。最后,把提取出的故障特征作为卷积神经网络模型的输入,实现故障定位和故障类型判断。本发明不仅能够实现配电网故障定位,也能实现故障类型判断,且相比其他方法诊断精度很高。通过对CNN模型的选择和模型参数的调整,能显著提高故障诊断精度和降低故障诊断耗时。与其他方法对比,该方法能有效提高故障精度,具有很好的泛化能力。
-
公开(公告)号:CN110222887A
公开(公告)日:2019-09-10
申请号:CN201910454601.2
申请日:2019-05-27
申请人: 国网安徽省电力有限公司 , 国网安徽省电力有限公司电力科学研究院 , 安徽大学
摘要: 本发明公开了基于VMD和DNN的预测方法及在短期负荷预测的应用,属于电力系统短期负荷预测技术领域。包括步骤1:采集负荷数据;步骤2:将采集数据进行归一化处理;步骤3:采用VMD方法对归一化后的原始负荷序列进行分解;步骤4:对步骤3得到的K个分量进行深度神经网络(DNN)训练;步骤5:将分解后的测试样本带入DNN并叠加得到最终的预测结果。本发明对具有波动性和随机性的数据预测准确,能够有效减少数据的计算量,缩短了计算时间,而且预测结果准确,提升负荷预测的准确性对电力系统的经济调度、稳定运行具有重要意义。
-
公开(公告)号:CN114069646A
公开(公告)日:2022-02-18
申请号:CN202111271604.6
申请日:2021-10-29
发明人: 朱明星 , 文一 , 潘丽珠 , 徐斌 , 程石 , 仇茹嘉 , 郑国强 , 赵瀚 , 葛江红 , 纪陈云 , 彭锦 , 曹薇薇 , 胡文超 , 刘锋 , 郑浩 , 张征凯 , 倪静怡 , 彭涛 , 高敏 , 倪正
IPC分类号: H02J3/18 , G06F30/25 , G06Q10/06 , G06Q50/06 , G06F113/04
摘要: 本发明公开了一种基于变电站运行数据的无功补偿优化方法,首先根据设备厂商或者现场测试得到的数据,获得10kV母线侧的电压、有功功率和无功功率数据;按照季度选取母线电压、有功功率和无功功率的典型数据;以剩余无功电量最小为目标函数,以无功不倒送、无功补偿器投切次数和投切间隔作为约束条件,采用改进的粒子群算法进行优化求解,确定无功补偿装置分组和容量的最佳方案,建立综合损耗、投资、位置三因素的加权综合评估系数,比较各个优化方案下的综合优化评估系数,选取综合优化评估系数最小的方案作为最佳方案,实现无功补偿优化。上述方法能够提高功率因数与电压水平,在保证供用电设备安全稳定运行的同时,提高电网运行经济性和可靠性。
-
公开(公告)号:CN110796303B
公开(公告)日:2023-11-07
申请号:CN201911018674.3
申请日:2019-10-24
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
IPC分类号: G06Q10/04 , G06F18/23 , G06F18/214 , G06Q50/06
摘要: 一种基于EWT和ODBSCAN的短期电力负荷预测方法,可解决单一的预测模型对于具有复杂变化及随机特性的负荷序列,预测难以获得理想的精度的技术问题。本发明提出基于EWT和ODBSCAN的组合预测方法,首先,采用EWT分解负荷,得到不同的固有模态分量;其次,采用合理的方法对各分量进行预测。其中,低频、中频分量采用IRF预测;高频分量具有不确定性,使用ODBSCAN根据气象因素温度和湿度聚类,再根据每类的样本特性选择处理方法。最后,叠加各个分量的预测结果,获取总的预测结果。根据某地市现场实测负荷数据进行实验,预测结果分别与EWT‑IRF、EWT‑RF、EMD‑IRF模型的预测结果进行对比,可以获得更高的预测精度,体现实际负荷的变化规律。
-
公开(公告)号:CN114091841A
公开(公告)日:2022-02-25
申请号:CN202111273257.0
申请日:2021-10-29
摘要: 本发明公开了一种无功补偿装置配置及运行状态的评价方法,建立包括目标层、项目层、指标层的无功补偿装置配置及运行状态的评价指标体系;然后通过国网PMS系统获取所述无功补偿装置的配置参数,通过国网SCADA系统获取所述无功补偿装置的运行数据;对所得到的无功补偿装置的配置参数和运行数据进行处理,得到所建立的评价指标体系的各指标值;对各指标值进行劣化度数据归一化处理,得到评价矩阵;通过综合评价获得各指标值的权重,并计算得到无功补偿装置配置及运行状态的评价得分。上述方法充分借助电力系统数字化大数据资源获得评价体系指标值,提高了无功补偿设备智能化监测和管理水平,进而提升了电网安全运行水平和运维效率。
-
公开(公告)号:CN114355240B
公开(公告)日:2024-08-09
申请号:CN202111451134.1
申请日:2021-12-01
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
IPC分类号: G01R31/52 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/084 , G06N3/09
摘要: 本发明提供一种配电网接地故障诊断方法及装置,包括:获取配电网的基础拓扑结构故障时的一维零序电流信号,并将一维零序电流信号转换为二维图像;以所述二维图像作为卷积神经网络模型的输入,训练得到基础故障诊断模型;在配电网发生故障时,判断发生故障的拓扑结构是否为基础拓扑结构:若是,则利用基础故障诊断模型对配电网进行故障诊断,输出对应的故障类型;否则,基于基础故障诊断模型,利用迁移学习方法,得到该发生故障的拓扑结构对应的目标故障诊断模型,并利用该目标故障诊断模型对配电网进行故障诊断,输出对应的故障类型。本发明的配电网接地故障诊断方法能够实现不同拓扑结构的故障分类,运用范围广,故障分类快速,准确率高。
-
公开(公告)号:CN110796303A
公开(公告)日:2020-02-14
申请号:CN201911018674.3
申请日:2019-10-24
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
摘要: 一种基于EWT和ODBSCAN的短期电力负荷预测方法,可解决单一的预测模型对于具有复杂变化及随机特性的负荷序列,预测难以获得理想的精度的技术问题。本发明提出基于EWT和ODBSCAN的组合预测方法,首先,采用EWT分解负荷,得到不同的固有模态分量;其次,采用合理的方法对各分量进行预测。其中,低频、中频分量采用IRF预测;高频分量具有不确定性,使用ODBSCAN根据气象因素温度和湿度聚类,再根据每类的样本特性选择处理方法。最后,叠加各个分量的预测结果,获取总的预测结果。根据某地市现场实测负荷数据进行实验,预测结果分别与EWT-IRF、EWT-RF、EMD-IRF模型的预测结果进行对比,可以获得更高的预测精度,体现实际负荷的变化规律。
-
公开(公告)号:CN114077846B
公开(公告)日:2024-06-04
申请号:CN202111198766.1
申请日:2021-10-14
申请人: 国网安徽省电力有限公司电力科学研究院 , 安徽大学
IPC分类号: G06F18/243 , G06F18/2135 , G06F18/211 , G06N3/0442 , G06N3/09 , G01R31/08 , G01R31/12
摘要: 本发明的一种基于RF‑LSTM的故障电流多域识别方法及存储介质,其中方法包括以下步骤,针对电弧故障平台,获取原始电流信号;对原始电流信号进行处理,进行核主成分分析提取第三主成分,然后对第三主成分信号进行时域、频域和能量域特征提取;接着用随机森林进行无偏预测重要性估计选择对应负载条件下的高相关特征;最后将筛选后的特征用作LSTM的特征输入,用于学习和训练,实现对故障电弧的多域识别。本发明的方法减少了计算量并且提高了检测速度和精度;结果表明,此方法可以准确的识别电弧故障。
-
-
-
-
-
-
-
-
-