-
公开(公告)号:CN111861206A
公开(公告)日:2020-10-30
申请号:CN202010700143.9
申请日:2020-07-20
申请人: 国网上海市电力公司 , 复旦大学 , 华东电力试验研究院有限公司
IPC分类号: G06Q10/06 , G06Q50/06 , G06F16/215 , G06F16/2458
摘要: 本发明涉及一种基于企业电力大数据的工业行业景气指数获取方法,包括以下步骤:1)获取行业内企业的用电信息,并进行清洗和修正;2)根据中类行业的用电量数据构建不同时期的复杂网络模型,用以描述行业间相互影响、相互传导的上下游关联关系;3)提取复杂网络模型的网络指标并采用隐马尔可夫状态转移模型进行工业行业景气指数预测。与现有技术相比,本发明具有有效整合企业耗电量高频数据、明确行业间的上下游产业结构、排除非生产性因素的干扰、构建细分行业的工业行业景气指数等优点。
-
公开(公告)号:CN110298765B
公开(公告)日:2024-02-02
申请号:CN201910472376.5
申请日:2019-05-31
IPC分类号: G06Q50/06 , G06F18/2433
摘要: 本发明涉及一种基于客观关联因素的配电网用电功率异常检测方法,该方法包括以下步骤:步骤1:针对用电用户建立结合综合用电特征信息的理论用电量模型;步骤2:实时收集用电用户的实际用电量;步骤3:获取实际用电量与理论用电量模型之间的偏差;步骤4:利用LOF算法对偏差进行离群检测并得出异常嫌疑用户检测结果。与现有技术相比,本发明具有检测准确度高,针对性强等优点。
-
公开(公告)号:CN110288384A
公开(公告)日:2019-09-27
申请号:CN201910473320.1
申请日:2019-05-31
摘要: 本发明涉及一种大型商业用户用电冲击影响判断控制方法,该控制方法包括以下步骤:步骤1:针对大型商业用户用电区域建立空间垄断模型;步骤2:根据所建立的空间垄断模型得出大型商业用户用电区域市场范围不变情况下的三种价格策略的价格最优值;步骤3:根据所建立的空间垄断模型得出大型商业用户用电区域市场范围可变情况下的三种价格策略的市场半径最优值;步骤4:针对实际大型商业用户用电区域的相关数据与步骤2和步骤3各自得到的价格最优值和市场半径最优值相比较并进行实际用电分配以及用电价格策略的调整控制。与现有技术相比,本发明具有控制准确度高,理论先进等优点。
-
公开(公告)号:CN110288130A
公开(公告)日:2019-09-27
申请号:CN201910469792.X
申请日:2019-05-31
摘要: 本发明涉及一种用户用电量预测方法,包括步骤:1)结合用户属性、外界条件等因素对用电需求的影响,建立设有伴随变量的有限混合模型;2)根据步骤1)建立的有限混合模型,对某区域用户的用电数据进行解构;3)对某区域用户的总用电量进行解构,获取用电期望值,完成用户用电量预测;4)利用相对误差检测步骤3)中总用电量解构的正确性和稳定性。与现有技术相比,本发明通过伴随变量可以进行不同用户用电需求概率的计算,有助于辅助区域内用户用电需求的预测,能够有效地反映电量的实际变化趋势。
-
公开(公告)号:CN110297851A
公开(公告)日:2019-10-01
申请号:CN201910469104.X
申请日:2019-05-31
IPC分类号: G06F16/2458 , G06F17/16 , G06Q50/06
摘要: 本发明涉及一种电力负荷的改进关联性获取方法,步骤为:1)输入拟特征变量与因变量,形成初始矩阵;2)利用基于熵权法的灰色关联分析算法,计算拟特征变量对因变量的纵向关联度,获取纵向关联度矩阵;3)利用基于熵权法的灰色关联分析算法,计算拟特征变量间的横向关联度,获取横向关联度矩阵;4)将横向关联度大于设定值的拟特征变量分为一组,比较该组中各变量对因变量的纵向关联度,选出纵向关联度最大的拟特征变量;5)输出横向关联度小于等于设定值的拟特征变量,结合纵向关联度最大的拟特征变量作为自变量数据集的特征变量。本发明可避免关联度高的影响因素对负荷有贡献的变量产生的冗余,使各影响因素反映的信息更加完整。
-
公开(公告)号:CN110287544A
公开(公告)日:2019-09-27
申请号:CN201910472368.0
申请日:2019-05-31
摘要: 本发明涉及一种基于高斯混合算法的配电网用电时序解构方法,该解构方法包括以下分步骤:步骤1:将配电网中每个用电器的分项电量数据分为训练集和测试集;步骤2:针对训练集应用隐马尔科夫模型进行训练,获取最优参数解;步骤3:结合最优参数解和总用电量数据构建总模型,利用总模型求出测试集上每个时刻总电量观测数据对应的状态,并将总状态分解到各个分项用电器所对应的状态上;步骤4:根据步骤2中训练得到的每个用电器的分项模型预测每个用电器在测试时间内的先验期望值;步骤5:利用先验期望值对总电量观测数据进行对比修订并得出最终解构结果。与现有技术相比,本发明具有解构速度快,精确度高等优点。
-
公开(公告)号:CN110287544B
公开(公告)日:2023-07-04
申请号:CN201910472368.0
申请日:2019-05-31
IPC分类号: G06F30/20 , G06F17/15 , G06F17/16 , G06Q50/06 , G06F119/12 , G06F113/04
摘要: 本发明涉及一种基于高斯混合算法的配电网用电时序解构方法,该解构方法包括以下分步骤:步骤1:将配电网中每个用电器的分项电量数据分为训练集和测试集;步骤2:针对训练集应用隐马尔科夫模型进行训练,获取最优参数解;步骤3:结合最优参数解和总用电量数据构建总模型,利用总模型求出测试集上每个时刻总电量观测数据对应的状态,并将总状态分解到各个分项用电器所对应的状态上;步骤4:根据步骤2中训练得到的每个用电器的分项模型预测每个用电器在测试时间内的先验期望值;步骤5:利用先验期望值对总电量观测数据进行对比修订并得出最终解构结果。与现有技术相比,本发明具有解构速度快,精确度高等优点。
-
公开(公告)号:CN110309134A
公开(公告)日:2019-10-08
申请号:CN201910473298.0
申请日:2019-05-31
IPC分类号: G06F16/215 , G06F16/2455 , G06F16/2458 , G06K9/62 , G06N3/00 , G06Q50/06
摘要: 本发明涉及一种基于用电行为迁移与社群演化的配电网用电异常检测方法,该检测方法包括以下步骤:步骤1:采集用户用电量数据并进行数据清洗,对清洗后的数据进行特征提取得到用电量数据序列;步骤2:对用电量数据序列划分周期进行趋势聚类后与个体及社群行为特征进行匹配,并根据匹配结果进行社群演化与迁移估计;步骤3:根据社群演化与迁移估计结果计算周期间隔异常值和局部累计异常演化值;步骤4:将周期间隔异常值和局部累计异常演化值进行排序并利用排序结果与历史异常用户异常用电行为对应数据比对得出用户用电异常检测结果。与现有技术相比,本发明具有检测精度高,针对性强等优点。
-
公开(公告)号:CN110298765A
公开(公告)日:2019-10-01
申请号:CN201910472376.5
申请日:2019-05-31
摘要: 本发明涉及一种基于客观关联因素的配电网用电功率异常检测方法,该方法包括以下步骤:步骤1:针对用电用户建立结合综合用电特征信息的理论用电量模型;步骤2:实时收集用电用户的实际用电量;步骤3:获取实际用电量与理论用电量模型之间的偏差;步骤4:利用LOF算法对偏差进行离群检测并得出异常嫌疑用户检测结果。与现有技术相比,本发明具有检测准确度高,针对性强等优点。
-
公开(公告)号:CN110298552A
公开(公告)日:2019-10-01
申请号:CN201910473325.4
申请日:2019-05-31
摘要: 本发明涉及一种结合历史用电特征的配电网个体功率异常检测方法,该方法包括以下步骤:步骤1:提取特征向量;步骤2:分别计算用电低谷时段和平段用电量各自占总用电的百分比;步骤3:根据用电低谷时段和平段用电量各自占总用电的百分比的计算结果构造特征矩阵;步骤4:利用局部离群算法得出局部得去得分;步骤5:循环执行步骤1~步骤4得出所有用户的局部得去得分;步骤6:根据所有用户的局部得去得分进一步得出对应的个体异常矩阵,计算个体异常矩阵中个体每个周期的异常度并将个体每个周期的异常度与历史异常用户异常用电行为对应数据比对得出用户用电异常检测结果。与现有技术相比,本发明具有检测准确度高,针对性强等优点。
-
-
-
-
-
-
-
-
-