-
公开(公告)号:CN116760742B
公开(公告)日:2024-06-21
申请号:CN202310749445.9
申请日:2023-06-21
Applicant: 南京南瑞信息通信科技有限公司 , 国网电力科学研究院有限公司 , 国网上海市电力公司 , 南京航空航天大学 , 国家电网有限公司
Inventor: 胡游君 , 刘金锁 , 邱玉祥 , 刘军 , 邹徐熹 , 沈耀威 , 顾亚林 , 李马峰 , 张俊杰 , 邱文元 , 施健 , 刘皓 , 谢伟 , 唐跃中 , 张王俊 , 卢士达 , 张露维 , 冯天波 , 何旭东 , 卲佳炜 , 王虹岚 , 时宽治 , 李静 , 羊麟威
IPC: H04L43/0823 , G06F18/2433 , G06F18/25 , G06N3/0464 , G06N3/0455 , G06N3/0442 , G06N3/048 , G06N3/08 , H04L43/0888
Abstract: 本发明公开了一种基于多阶段时空融合的网络流量深度异常检测方法及系统,首先使用图注意力网络和门控时间卷积网络分别提取网络流量的时空特征,然后采用双仿射模块对时空特征进行深度融合,并提出了多阶段逐层传播机制来增强模型对原始数据的特征提取,提高模型的异常识别能力,再通过对自编码器采用对抗训练的方式来放大异常的重构误差,增加了双解码器对异常样本的区分能力。本发明有效的提高了模型的泛化能力和拟合能力,同时对中间潜变量特征表示运用K‑means算法进行特征聚类,将特征与簇心的最大距离作为判断异常的标准之一,有效的减少了模型的虚警率。
-
公开(公告)号:CN117540333A
公开(公告)日:2024-02-09
申请号:CN202311078583.5
申请日:2023-08-24
Applicant: 南京航空航天大学 , 国网上海市电力公司 , 南京南瑞信息通信科技有限公司 , 国网电力科学研究院有限公司 , 国家电网有限公司
Inventor: 杨松林 , 李静 , 钱李烽 , 吴金龙 , 顾荣斌 , 何旭东 , 方晓蓉 , 邵佳炜 , 张皛 , 潘晨灵 , 刘文意 , 刘金锁 , 胡游君 , 周忠冉 , 李马峰 , 蔡世龙 , 潘安顺 , 顾亚林 , 张俊杰 , 邱文元 , 富思
IPC: G06F18/25 , G06F18/213 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于时空信息融合的多传感器数据异常检测方法,包括:采用多尺度卷积注意力对多传感器时序数据进行时空特征提取;使用交叉注意力关联互补特征的特征矩阵以对多传感器时序数据的时空信息进行深度融合;利用通道注意力从传感器角度聚合特征,通过全连接层为特征构建注意力权重,进一步增强时空信息的融合效果;利用训练好的模型重构测试数据,以重构数据和真实数据之间的误差作为判断时序数据某个点为异常的可能性,最终实现对多传感器数据异常的检测。本发明充分考虑了时间和空间信息之间的相互作用,实现了跨特征交互的时空融合,提升了传感器数据异常检测的准确性。
-
公开(公告)号:CN116760742A
公开(公告)日:2023-09-15
申请号:CN202310749445.9
申请日:2023-06-21
Applicant: 南京南瑞信息通信科技有限公司 , 国网电力科学研究院有限公司 , 国网上海市电力公司 , 南京航空航天大学 , 国家电网有限公司
Inventor: 胡游君 , 刘金锁 , 邱玉祥 , 刘军 , 邹徐熹 , 沈耀威 , 顾亚林 , 李马峰 , 张俊杰 , 邱文元 , 施健 , 刘皓 , 谢伟 , 唐跃中 , 张王俊 , 卢士达 , 张露维 , 冯天波 , 何旭东 , 卲佳炜 , 王虹岚 , 时宽治 , 李静 , 羊麟威
IPC: H04L43/0823 , G06F18/2433 , G06F18/25 , G06N3/0464 , G06N3/0455 , G06N3/0442 , G06N3/048 , G06N3/08 , H04L43/0888
Abstract: 本发明公开了一种基于多阶段时空融合的网络流量深度异常检测方法及系统,首先使用图注意力网络和门控时间卷积网络分别提取网络流量的时空特征,然后采用双仿射模块对时空特征进行深度融合,并提出了多阶段逐层传播机制来增强模型对原始数据的特征提取,提高模型的异常识别能力,再通过对自编码器采用对抗训练的方式来放大异常的重构误差,增加了双解码器对异常样本的区分能力。本发明有效的提高了模型的泛化能力和拟合能力,同时对中间潜变量特征表示运用K‑means算法进行特征聚类,将特征与簇心的最大距离作为判断异常的标准之一,有效的减少了模型的虚警率。
-
公开(公告)号:CN117076171A
公开(公告)日:2023-11-17
申请号:CN202311014078.4
申请日:2023-08-11
Applicant: 国网上海市电力公司 , 南京南瑞信息通信科技有限公司 , 国网电力科学研究院有限公司 , 南京航空航天大学 , 国家电网有限公司
Inventor: 张王俊 , 吴金龙 , 何旭东 , 顾荣斌 , 潘晨灵 , 刘文意 , 张皛 , 方晓蓉 , 邵佳炜 , 周忠冉 , 李马峰 , 蔡世龙 , 潘安顺 , 顾亚林 , 张俊杰 , 邱文元 , 富思 , 李静 , 陈世伟
IPC: G06F11/07 , G06N3/0442 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种面向多元时序数据的异常检测及定位方法及装置,方法包括以下步骤:S1:对多元时序数据中每个时间点的数据划分多个尺度的滑动窗口,计算得到多元时序数据的特征矩阵;S2:使用正常的多尺度特征矩阵和自特征矩阵作为训练集输入训练模型进行迭代训练;S3:组建异常检测器,将多元时序数据输入异常检测器,得到重构数据,计算多元时序数据的异常分数;S4:基于异常分数以及阈值,判定多元时序数据是否为异常;S5:根据异常贡献程度确定发生异常的根因。本发明具有能有效识别异常根因,进而完成对故障传感器检测及定位的技术效果。
-
公开(公告)号:CN116522265A
公开(公告)日:2023-08-01
申请号:CN202310462292.X
申请日:2023-04-25
Applicant: 国网上海市电力公司 , 南京南瑞信息通信科技有限公司 , 国网电力科学研究院有限公司 , 南京航空航天大学
Inventor: 谢伟 , 吴金龙 , 顾荣斌 , 何旭东 , 方晓蓉 , 邵佳炜 , 张晶 , 潘晨灵 , 刘文意 , 刘金锁 , 胡游君 , 周忠冉 , 李马峰 , 蔡世龙 , 潘安顺 , 顾亚林 , 张俊杰 , 邱文元 , 富思 , 李静 , 时宽治 , 王虹岚
IPC: G06F18/2433 , G06F18/213 , G06F18/214 , G06N3/0442 , G06N3/0464 , G06N3/08 , G06F123/02
Abstract: 本发明公开了基于多尺度双向时空信息融合的工业互联网时序数据异常检测方法及装置,包括基于GAT和BiLSTM的双向时空特征提取、基于多尺度门控TCN的多尺度特征提取、基于双仿射的特征融合编码、基于变分自编码的对抗训练的和基于工业时序数据重构误差的异常检测。本发明首先通过构建的双向时空特征提取模块依次捕获多个时间序列之间的相关性和双向依赖性。其次,采用设计的多尺度特征提取模块自适应的提取时间序列的多尺度时序特征,并引入双仿射特征融合编码模块实现多尺度时序特征和双向时空特征的交叉融合,增强模型对原始数据的特征提取。最后,提出了结合对抗训练的变分自编码器来放大异常的重构误差并增强模型对训练数据噪声的抗干扰能力,提高了本发明对异常数据的区分能力和检测性能。
-
公开(公告)号:CN118093439B
公开(公告)日:2024-07-05
申请号:CN202410487715.8
申请日:2024-04-23
Applicant: 南京航空航天大学 , 国网上海市电力公司 , 国网电力科学研究院有限公司 , 国家电网有限公司
Inventor: 位雪银 , 李静 , 吴金龙 , 顾荣斌 , 何旭东 , 方晓蓉 , 邵佳炜 , 张皛 , 潘晨灵 , 刘文意 , 周忠冉 , 李马峰 , 蔡世龙 , 潘安顺 , 顾亚林 , 张俊杰 , 邱文元 , 富思
Abstract: 本发明公开了一种基于一致图聚类的微服务提取方法和系统,包括单体程序结构依赖视图构建、单体程序语义视图构建、基于一致图增强图Transformer的特征嵌入表示学习、基于k‑means聚类算法的微服务提取。本发明通过提取单体程序中类之间的依赖关系和创建类的过程中使用的文本信息,构建结构依赖视图和语义视图,再通过一致图增强图Transformer生成一致图,实现单体程序结构信息和语义信息的统一建模,最后基于得到的一致图,利用k‑means聚类算法实现对单体程序的拆分。本发明结合单体程序多视图信息,构建一致图增强图Transformer,实现了微服务提取在功能性和模块性方面性能的提升。
-
公开(公告)号:CN117319015A
公开(公告)日:2023-12-29
申请号:CN202311216211.4
申请日:2023-09-19
Applicant: 国网电力科学研究院有限公司 , 国网上海市电力公司 , 南京航空航天大学 , 国家电网有限公司
Inventor: 刘金锁 , 李马峰 , 潘安顺 , 张俊杰 , 刘军 , 蔡世龙 , 胡游君 , 周忠冉 , 顾亚林 , 邱文元 , 富思 , 邱玉祥 , 谢伟 , 唐跃中 , 卢士达 , 陈宇 , 彭巍 , 刘逸逸 , 王亮 , 何旭东 , 位雪银 , 李静
Abstract: 本发明公开了一种基于可信标识的终端载体自动辨识方法,包括:采集待辨识的终端载体的硬件信息、用户信息、历史登录信息和历史交互信息;构建用户分类模型,得到用户所属类型;对待辨识的终端载体的硬件信息和用户信息进行哈希处理,将得到的第一标识与可信标识库中的第一历史标识进行比对,根据比对结果对终端载体进行辨识;如果比对失败,对待辨识的终端载体的硬件信息、用户信息和用户所属类型进行哈希处理,将得到的第二标识与可信标识库中的第二历史标识进行比对,根据比对结果对终端载体进行辨识。本发明能够对请求连接的电力物联终端载体进行自动辨识,降低系统资源消耗。
-
公开(公告)号:CN118301092A
公开(公告)日:2024-07-05
申请号:CN202410303496.3
申请日:2024-03-15
Applicant: 国网电力科学研究院有限公司 , 国网上海市电力公司 , 南京航空航天大学 , 国家电网有限公司
Inventor: 邹徐熹 , 刘军 , 魏训虎 , 胡游君 , 刘金锁 , 周忠冉 , 邱玉祥 , 李马峰 , 蔡世龙 , 沈耀威 , 刘赛 , 潘安顺 , 顾亚林 , 张俊杰 , 邱文元 , 富思 , 樊泽宇 , 刘皓 , 施健 , 万明 , 赵华 , 方晓蓉 , 张皛 , 李静 , 王虹岚 , 李飞
IPC: H04L47/2483 , H04L67/10 , H04L67/12 , G06F18/2431 , G06F18/2415 , G06N3/042 , G06N3/0455 , G06N3/098
Abstract: 本发明公开了一种基于联邦学习的分布式物联网设备识别方法及系统,包括流量数据预处理、深度指纹提取、基于知识蒸馏的设备识别、生成式知识蒸馏和模型聚合五部分。本发明在边缘设备方面,提出了轻量级设备指纹识别模型,提取网络流量会话中的时序信息以及特征间信息以生成可识别的指纹,并训练一个高效的分类器实现指纹识别;在中央服务器方面,设计了基于生成式知识蒸馏的异构联邦学习算法,通过训练变分生成器以无代理数据的方式集成本地信息并利用集成知识指导局部模型,从而解决分布式场景下的统计异构问题。提升分布式物联网设备识别的效果和可行性。
-
公开(公告)号:CN118093439A
公开(公告)日:2024-05-28
申请号:CN202410487715.8
申请日:2024-04-23
Applicant: 南京航空航天大学 , 国网上海市电力公司 , 国网电力科学研究院有限公司 , 国家电网有限公司
Inventor: 位雪银 , 李静 , 吴金龙 , 顾荣斌 , 何旭东 , 方晓蓉 , 邵佳炜 , 张皛 , 潘晨灵 , 刘文意 , 周忠冉 , 李马峰 , 蔡世龙 , 潘安顺 , 顾亚林 , 张俊杰 , 邱文元 , 富思
Abstract: 本发明公开了一种基于一致图聚类的微服务提取方法和系统,包括单体程序结构依赖视图构建、单体程序语义视图构建、基于一致图增强图Transformer的特征嵌入表示学习、基于k‑means聚类算法的微服务提取。本发明通过提取单体程序中类之间的依赖关系和创建类的过程中使用的文本信息,构建结构依赖视图和语义视图,再通过一致图增强图Transformer生成一致图,实现单体程序结构信息和语义信息的统一建模,最后基于得到的一致图,利用k‑means聚类算法实现对单体程序的拆分。本发明结合单体程序多视图信息,构建一致图增强图Transformer,实现了微服务提取在功能性和模块性方面性能的提升。
-
公开(公告)号:CN119168057A
公开(公告)日:2024-12-20
申请号:CN202411083847.0
申请日:2024-08-08
Applicant: 南京航空航天大学 , 国网上海市电力公司 , 国网电力科学研究院有限公司 , 国家电网有限公司
Inventor: 王路航 , 李静 , 杨松林 , 钱李烽 , 吴金龙 , 顾荣斌 , 何旭东 , 方晓蓉 , 邵佳炜 , 张皛 , 潘晨灵 , 刘文意 , 刘金锁 , 胡游君 , 周忠冉 , 李马峰 , 蔡世龙 , 潘安顺 , 顾亚林 , 张俊杰 , 邱文元 , 富思
IPC: G06N5/04 , G06N5/045 , G06N5/022 , G06N3/042 , G06N3/045 , G06N3/0464 , G06N3/049 , G06F18/2131 , G06F18/25 , G06F18/22 , G06F18/23 , G06F18/2413 , G06F18/2433 , G06F123/02
Abstract: 本发明公开了一种用于多元时序数据的异常事件根因定位方法和装置,方法包括:采用离散小波变换对原始时间序列进行分解,分别提取分解得到的不同尺度下频率分量的空间特征和时间特征,对拼接结果进行逆小波变换以合成时间序列;采用聚类算法和异动归因算法,根据特征的相似性将特征分组,并识别出与异常最相关的特征维度;确定与异常最相关的聚类中各个特征的因果关系和发生顺序,构建得到根因链;分析根因链中的特征顺序,定位到引发异常的根因;结合根因故障溯源与诊断知识库中的知识和经验,为已定位的根因提供解释说明和解决方案。本发明实现了对根源故障的追踪,深入挖掘时间序列数据中的异常现象,揭示导致这些异常的潜在原因。
-
-
-
-
-
-
-
-
-