-
公开(公告)号:CN106972967A
公开(公告)日:2017-07-21
申请号:CN201710195501.3
申请日:2017-03-29
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
CPC classification number: H04L41/147 , G06N20/00 , G06Q10/04 , H04L41/12
Abstract: 本发明提出了一种用于链路预测的深度学习降维方法和装置,该方法,包括:根据各个网络节点在设定时间段内的连接关系,确定每个网络节点的一级连接网络节点和二级连接网络节点;按照设定时长将所述设定时间段划分为多个时间片,并根据所述各个网络节点在每个时间片内的连接关系,确定出在每个时间片内每个网络节点与对应的一级连接网络节点和二级连接网络节点的连接关系;根据在每个时间片内每个网络节点与对应的一级连接网络节点和二级连接网络节点的连接关系,通过深度学习算法模型,对所述各个网络节点进行链路预测。本发明减少输入到深度学习算法模型的数据量,减少学习训练时间并提高链路预测的准确性。
-
公开(公告)号:CN106960672A
公开(公告)日:2017-07-18
申请号:CN201710203054.1
申请日:2017-03-30
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
IPC: G10L21/0388 , H04S7/00
CPC classification number: G10L21/0388 , H04S7/303
Abstract: 本发明公开了一种立体声音频的带宽扩展方法与装置。该方法包括:将立体声信号分解为直达声和扩散声;按照预设的频带扩展方法对扩散声进行带宽扩展;将直达声分离成多个不同方位的点声源,对多个点声源分别进行带宽扩展,得到带宽扩展后的多个点声源;将带宽扩展后的多个点声源按照预先估计的方位信息进行重新混合,得到带宽扩展后的直达声;根据带宽扩展后的直达声结合带宽扩展后的扩散声重建出宽带立体声音频信号。借助于本发明的技术方案,解决了现有技术中仅根据单个声道重建信号的主观质量实现对信号带宽的扩展,没有考虑到两个声道中信号能量和相位的相关性,其重建立体声信号严重影响了听者对声源位置和距离的判定的问题。
-
公开(公告)号:CN106972967B
公开(公告)日:2020-07-24
申请号:CN201710195501.3
申请日:2017-03-29
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
Abstract: 本发明提出了一种用于链路预测的深度学习降维方法和装置,该方法,包括:根据各个网络节点在设定时间段内的连接关系,确定每个网络节点的一级连接网络节点和二级连接网络节点;按照设定时长将所述设定时间段划分为多个时间片,并根据所述各个网络节点在每个时间片内的连接关系,确定出在每个时间片内每个网络节点与对应的一级连接网络节点和二级连接网络节点的连接关系;根据在每个时间片内每个网络节点与对应的一级连接网络节点和二级连接网络节点的连接关系,通过深度学习算法模型,对所述各个网络节点进行链路预测。本发明减少输入到深度学习算法模型的数据量,减少学习训练时间并提高链路预测的准确性。
-
公开(公告)号:CN116778910A
公开(公告)日:2023-09-19
申请号:CN202310505872.2
申请日:2023-05-06
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L15/02 , G10L15/06 , G10L15/16 , G10L15/28 , G06F18/2135 , G06F18/241 , G06N3/0464 , G06N3/08
Abstract: 本申请提供了一种语音检测方法,包括:获取目标语音,将所述目标语音进行预处理,所述预处理包括预加重、分帧及加窗;确定所述预处理后目标语音的第一声道特征、第一声源波特征和多种第一相关特征;基于所述第一声道特征、第一声源波特征和多种第一相关特征确定所述第一主成分特征;将所述第一主成分特征输入训练好的分类器,输出分类的结果,所述分类结果为伪造语音,或自然语音。本申请利用伪造语音在基频处留下的痕迹信息,利用伪造语音与自然语音在声源和声道特征上的差异以实现伪造语音检测。使用主成分分析的方法分别对声源和声道特征进行筛选,选取具有较高相关性的主成分作为特征,减少特征维度和冗余特征,提高模型的泛化能力和效率。
-
公开(公告)号:CN106960672B
公开(公告)日:2020-08-21
申请号:CN201710203054.1
申请日:2017-03-30
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院声学研究所
IPC: G10L21/0388 , H04S7/00
Abstract: 本发明公开了一种立体声音频的带宽扩展方法与装置。该方法包括:将立体声信号分解为直达声和扩散声;按照预设的频带扩展方法对扩散声进行带宽扩展;将直达声分离成多个不同方位的点声源,对多个点声源分别进行带宽扩展,得到带宽扩展后的多个点声源;将带宽扩展后的多个点声源按照预先估计的方位信息进行重新混合,得到带宽扩展后的直达声;根据带宽扩展后的直达声结合带宽扩展后的扩散声重建出宽带立体声音频信号。借助于本发明的技术方案,解决了现有技术中仅根据单个声道重建信号的主观质量实现对信号带宽的扩展,没有考虑到两个声道中信号能量和相位的相关性,其重建立体声信号严重影响了听者对声源位置和距离的判定的问题。
-
公开(公告)号:CN109599123B
公开(公告)日:2021-02-09
申请号:CN201710911340.3
申请日:2017-09-29
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L21/02 , G10L19/02 , G10L19/04 , G10L21/038
Abstract: 本发明公开一种基于遗传算法优化模型参数的音频带宽扩展方法,所述方法包括:步骤1)对输入音频信号x(n)进行预处理,获得滤波信号;步骤2)对滤波信号进行调制重叠变换得到低频调制重叠变换系数;步骤3)将低频调制重叠变换系数划分子带,计算每个子带的均方根能量,得到低频频谱包络序列;步骤4)根据低频频谱包络序列,采用灰色模型GM(1,1)对音频信号的高频子带能量进行估计,得到高频频谱包络;步骤5)采用频谱复制、频谱折叠、非线性计算、综合多带激励或非线性预测方法对音频频谱细节进行扩展,得到高频频谱细节;步骤6)根据上述所得高频频谱包络和高频频谱细节恢复音频信号x(n)的高频频谱信息;步骤7)利用调制重叠反变换实现x(n)的带宽扩展。
-
公开(公告)号:CN109599123A
公开(公告)日:2019-04-09
申请号:CN201710911340.3
申请日:2017-09-29
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G10L21/02 , G10L19/02 , G10L19/04 , G10L21/038
Abstract: 本发明公开一种基于遗传算法优化模型参数的音频带宽扩展方法,所述方法包括:步骤1)对输入音频信号x(n)进行预处理,获得滤波信号;步骤2)对滤波信号进行调制重叠变换得到低频调制重叠变换系数;步骤3)将低频调制重叠变换系数划分子带,计算每个子带的均方根能量,得到低频频谱包络序列;步骤4)根据低频频谱包络序列,采用灰色模型GM(1,1)对音频信号的高频子带能量进行估计,得到高频频谱包络;步骤5)采用频谱复制、频谱折叠、非线性计算、综合多带激励或非线性预测方法对音频频谱细节进行扩展,得到高频频谱细节;步骤6)根据上述所得高频频谱包络和高频频谱细节恢复音频信号x(n)的高频频谱信息;步骤7)利用调制重叠反变换实现x(n)的带宽扩展。
-
公开(公告)号:CN111708887B
公开(公告)日:2022-09-23
申请号:CN202010542354.4
申请日:2020-06-15
Applicant: 国家计算机网络与信息安全管理中心 , 杭州东信北邮信息技术有限公司
Abstract: 一种自定义规则的多模型融合的不良呼叫识别方法,包括:构建规则策略模型:设置若干条规则,将多条规则通过逻辑运算符连接构成策略,并设置策略的模型融合方式,由所有策略构成规则策略模型;构建识别不良呼叫的卷积神经网络和基于不良呼叫投诉的BERT文本分类模型;根据策略包含的规则的计算式,为每条策略生成递归计算表达式,然后执行递归计算表达式以获得策略执行结果,同时,运行卷积神经网络和BERT文本分类模型以获得输出结果,最后根据每条策略的模型融合方式和执行结果、卷积神经网络和BERT文本分类模型的输出结果,计算得到不良呼叫识别结果。本发明属于信息技术领域,能将规则和隐性表征模型有效融合到不良呼叫识别技术中。
-
公开(公告)号:CN113765556A
公开(公告)日:2021-12-07
申请号:CN202111134795.1
申请日:2021-09-27
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04B7/0456 , H04B7/0413 , H04B17/318 , H04L5/00 , H04L25/02 , H04W12/00
Abstract: 本公开提供一种数据传输方法、装置、电子设备及存储介质。该方法包括:接收合法用户发送的导频信号;根据所述导频信号进行信道估计,获得信道状态信息;对所述信道状态信息进行混合预编码,获得混合预编码矩阵;基于零空间的人工辅助噪声序列对所述信道状态信息进行预编码,获得人工噪声预编码矩阵;使用所述混合预编码矩阵和所述人工噪声预编码矩阵进行数据传输。该方法可以保证基站与合法用户间数据的安全传输。
-
公开(公告)号:CN113052270A
公开(公告)日:2021-06-29
申请号:CN202110503779.9
申请日:2021-05-10
Applicant: 清华大学 , 国家计算机网络与信息安全管理中心
Abstract: 本申请涉及一种分类精度评价方法、装置、计算机设备和存储介质。所述方法包括:获取有害语音样本集;将有害语音样本集中的每个有害语音样本输入待评价的有害语音分类模型中进行分类,得到预测类别标签;在预设的分类层级中,确定与预测类别标签和有害语音样本的样本类别标签对应的目标分类;根据目标分类计算待评价的有害语音分类模型的分类精确程度。本方案中,对有害语音样本进行了多层次的分类(即分类层级),然后在分类层级中确定预测类别标签和样本类别标签共同所属的目标分类,目标分类可以反映预测类别标签和样本类别标签的匹配度,进而根据目标分类确定分类模型的分类精确程度,能够有效的提高分类模型评价的准确度。
-
-
-
-
-
-
-
-
-