基于注意力机制和多层次特征融合的低照度图像增强方法

    公开(公告)号:CN110210608A

    公开(公告)日:2019-09-06

    申请号:CN201910483957.9

    申请日:2019-06-05

    Abstract: 本发明涉及一种基于注意力机制和多层次特征融合的低照度图像增强方法,包括以下步骤:在输入端对低照度图像进行处理,输出四通道特征图;使用基于注意力机制的卷积层作为特征提取模块,用于提取基础特征作为低层特征;将低层特征与相应的高层特征和卷积层最深层次的特征融合,经过反卷积层后,获得最终特征图;输出映射将最终的特征图还原成RGB图片。本发明充分利用了深度卷积神经网络模型的多层次特征,将不同层次特征融合,并通过通道注意力机制,给予特征通道不同的权重,获得了更优的特征表示,提高了图像处理的准确率,获取了高质量图像,可广泛用于计算机低层次视觉任务技术领域。

    基于注意力机制和多层次特征融合的低照度图像增强方法

    公开(公告)号:CN110210608B

    公开(公告)日:2021-03-26

    申请号:CN201910483957.9

    申请日:2019-06-05

    Abstract: 本发明涉及一种基于注意力机制和多层次特征融合的低照度图像增强方法,包括以下步骤:在输入端对低照度图像进行处理,输出四通道特征图;使用基于注意力机制的卷积层作为特征提取模块,用于提取基础特征作为低层特征;将低层特征与相应的高层特征和卷积层最深层次的特征融合,经过反卷积层后,获得最终特征图;输出映射将最终的特征图还原成RGB图片。本发明充分利用了深度卷积神经网络模型的多层次特征,将不同层次特征融合,并通过通道注意力机制,给予特征通道不同的权重,获得了更优的特征表示,提高了图像处理的准确率,获取了高质量图像,可广泛用于计算机低层次视觉任务技术领域。

Patent Agency Ranking