-
公开(公告)号:CN115935787B
公开(公告)日:2023-09-01
申请号:CN202211386982.3
申请日:2022-11-07
Applicant: 哈尔滨理工大学
IPC: G06F30/27 , G06F17/16 , G06N3/0455 , G06N3/08 , G06F111/04
Abstract: 本发明公开了一种编码解码机制下的忆阻神经网络状态估计方法,所述方法包括如下步骤:步骤一、建立具有H∞性能约束及传感器能量收割的忆阻神经网络动态模型;步骤二、在编码解码机制下对忆阻神经网络动态模型进行状态估计;步骤三、计算忆阻神经网络的误差协方差矩阵上界及H∞性能约束条件;步骤四、利用随机分析方法,并通过解一系列线性矩阵不等式求解出估计器增益矩阵Kk的解,实现对忆阻神经网络进行状态估计;判断k+1是否达到总时长N,若k+1<N,则执行步骤二,反之结束。本发明解决了现有状态估计方法不能同时处理编码解码机制下具有H∞性能约束及方差受限忆阻神经网络的状态估计导致的估计性能准确率低的问题,从而提高了估计性能的准确率。
-
公开(公告)号:CN118200158A
公开(公告)日:2024-06-14
申请号:CN202410208823.7
申请日:2024-02-26
Applicant: 哈尔滨理工大学
IPC: H04L41/14 , H04L41/147
Abstract: 本发明公开了一种随机拓扑结构下异步采样速率分布式优化状态估计方法,所述方法如下:一、建立系统状态更新速率和测量采样速率不同的异步采样速率时变非线性动态模型;二、将动态模型转化为单速率的时变非线性动态模型;三、设计随机拓扑结构下的状态估计器;四、计算估计器在qk时刻的估计器增益矩阵Ki(qk)和Gi(qk);五、将Ki(qk)和Gi(qk)代入估计器中,得到qk+1时刻的状态估计量#imgabs0#六、计算一步预测误差协方差矩阵上界;七、将Ki(qk)和Gi(qk)带入一步预测误差协方差矩阵上界,计算qk+1时刻一步预测误差协方差矩阵的最小上界;令qk=qk+1,执行三,直至满足qk+1=K。本发明解决了现有状态估计方法不能同时处理随机拓扑结构下具有随机非线性和异步采样速率的分布式优化状态估计问题。
-
公开(公告)号:CN115935787A
公开(公告)日:2023-04-07
申请号:CN202211386982.3
申请日:2022-11-07
Applicant: 哈尔滨理工大学
IPC: G06F30/27 , G06F17/16 , G06N3/0455 , G06N3/08 , G06F111/04
Abstract: 本发明公开了一种编码解码机制下的忆阻神经网络状态估计方法,所述方法包括如下步骤:步骤一、建立具有H∞性能约束及传感器能量收割的忆阻神经网络动态模型;步骤二、在编码解码机制下对忆阻神经网络动态模型进行状态估计;步骤三、计算忆阻神经网络的误差协方差矩阵上界及H∞性能约束条件;步骤四、利用随机分析方法,并通过解一系列线性矩阵不等式求解出估计器增益矩阵Kk的解,实现对忆阻神经网络进行状态估计;判断k+1是否达到总时长N,若k+1<N,则执行步骤二,反之结束。本发明解决了现有状态估计方法不能同时处理编码解码机制下具有H∞性能约束及方差受限忆阻神经网络的状态估计导致的估计性能准确率低的问题,从而提高了估计性能的准确率。
-
公开(公告)号:CN115859030A
公开(公告)日:2023-03-28
申请号:CN202211514000.4
申请日:2022-11-29
Applicant: 哈尔滨理工大学
Abstract: 本发明公开了一种复杂耦合下的两步估计方法,所述方法包括如下步骤:步骤一、建立复杂耦合网络状态模型、测量输出模型及恶意攻击模型;步骤二、在恶意攻击的影响下对复杂耦合网络状态进行估计;步骤三、求出每个节点的先验估计偏差的协方差上界步骤四、计算每个节点的估计器系数矩阵步骤五、将代入步骤二中的后验状态估计模型中,得到后验估计判断t+1时刻与总时长T的关系,若t+1<T,则执行步骤六,若t+1=T,则结束;步骤六、根据计算出每个节点的后验估计偏差协方差上界令t=t+1,执行步骤二,直至满足t+1=T。本发明解决了在随机发生耦合和非线性耦合偏差影响下导致估计方法准确率降低的问题,以及在部分节点测量值未知且受恶意攻击时不能估计节点状态的问题。
-
公开(公告)号:CN115859030B
公开(公告)日:2023-06-16
申请号:CN202211514000.4
申请日:2022-11-29
Applicant: 哈尔滨理工大学
Abstract: 本发明公开了一种复杂耦合下的两步估计方法,所述方法包括如下步骤:步骤一、建立复杂耦合网络状态模型、测量输出模型及恶意攻击模型;步骤二、在恶意攻击的影响下对复杂耦合网络状态进行估计;步骤三、求出每个节点的先验估计偏差的协方差上界步骤四、计算每个节点的估计器系数矩阵步骤五、将代入步骤二中的后验状态估计模型中,得到后验估计判断t+1时刻与总时长T的关系,若t+1<T,则执行步骤六,若t+1=T,则结束;步骤六、根据计算出每个节点的后验估计偏差协方差上界令t=t+1,执行步骤二,直至满足t+1=T。本发明解决了在随机发生耦合和非线性耦合偏差影响下导致估计方法准确率降低的问题,以及在部分节点测量值未知且受恶意攻击时不能估计节点状态的问题。
-
-
-
-