-
公开(公告)号:CN118866355A
公开(公告)日:2024-10-29
申请号:CN202410914371.4
申请日:2024-07-09
Applicant: 哈尔滨理工大学 , 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
IPC: G16H50/30 , G16H50/20 , G06N3/0455 , G06F18/2135 , G06F18/24 , G06N3/096 , G06F18/15 , G06F18/23213
Abstract: 本发明一种基于联邦学习的代谢性疾病预测方法及系统,涉及智能医疗技术领域,为解决现有的模型难以全面进行多种代谢疾病的预测,且难以保障模型的运行效率、准确性以及数据的隐私安全。本发明构建多个代谢性疾病数据集,采用主成分分析和聚类对数据进行处理,构建合并数据集;构建有改进的DNN的网络模型,模型引入Transformer层和全连接层,Transformer层通过其注意力机制对数据进行特征提取与转换,并在向量信息中插入位置信息来捕捉主成分特征之间的隐含序列关系,全连接层之间通过残差层连接;基于联邦学习方法各客户端基于合并数据集采用蒸馏的方法对改进的DNN模型进行训练,最终得到全局的代谢性疾病预测模型,以实现对代谢性疾病进行分类。
-
公开(公告)号:CN118781342A
公开(公告)日:2024-10-15
申请号:CN202410883862.7
申请日:2024-07-02
Applicant: 哈尔滨理工大学
IPC: G06V10/26 , G06V10/22 , G06V10/774 , G06N3/0464 , G06N3/045 , G06V10/82 , G06N3/08 , G06T5/30 , G06T5/70 , G06T5/80 , G06V10/44
Abstract: 本发明涉及大田作物农机作业导航技术领域,提出了一种基于机器视觉的智能农业导航方法。首先,采集不同环境和长势的大田作物行图像,使用标注工具进行数据处理,并通过数据增强生成用于模型训练的数据集。其次,基于U‑Net架构和Swin Transformer构建轻量级图像分割网络,通过特征提取和损失比较,获得最优的作物行分割模型。最后,通过形态学处理和透视变换矩阵进行中心线提取及视角变换,结合摄像头标定信息计算实际的作物行偏移量,并传递给机械系统以完成导航任务。本发明通过图像分割网络的构建和数据训练,得到了适用于常规大田作物的分割模型,结合后处理操作获取真实偏移信息,从而实现农机导航,在实际应用中具有重要价值。
-