-
公开(公告)号:CN106019648A
公开(公告)日:2016-10-12
申请号:CN201610363500.0
申请日:2016-05-27
Applicant: 哈尔滨理工大学
IPC: G02F1/13 , G02F1/1343
Abstract: 一种基于低电压驱动液晶材料的可调谐太赫兹超材料滤波器及制备方法。要解决现有的太赫兹超材料滤波器的工作波长固定,工作带宽有限,应用范围窄,结构及制备工艺复杂,可靠性低的问题。本发明滤波器为多层平板结构,包括玻璃衬底层、第一金属结构层、绝缘层、金属种子层、第二金属结构层、液晶材料和玻璃盖板;制备方法:一、制备金属结构层;二、制备绝缘层;三、制备金属种子层;四、制备电镀用模具结构;五、制备周期性缝隙金属结构;六、填充液晶材料,盖玻璃盖板。本发明滤波器所需的电压减小、结构简单,调谐范围宽,响应时间快,极化不敏感,化学稳定性好。本发明方法适用于制备低电压驱动液晶材料的可调谐太赫兹超材料滤波器。
-
公开(公告)号:CN109726524B
公开(公告)日:2022-11-01
申请号:CN201910162042.8
申请日:2019-03-01
Applicant: 哈尔滨理工大学
IPC: G06F30/20 , G06K9/00 , G06N3/04 , G01M13/04 , G06F119/04
Abstract: 一种基于CNN和LSTM的滚动轴承剩余使用寿命预测方法,涉及滚动轴承寿命预测领域。针对滚动轴承存在性能退化渐变故障和突发故障两种模式下其剩余使用寿命(RUL)预测困难的问题,该方法首先对滚动轴承原始振动信号作FFT变换,然后将预处理所得到的频域幅值信号进行归一化处理后,并将其作为CNN的输入。利用CNN自动提取数据局部抽象信息以挖掘深层特征,避免传统特征提取方法过于依赖专家经验的问题。之后再将深层特征输入到LSTM网络中,构建趋势性量化健康指标,同时确定失效阈值。最后,运用移动平均法进行平滑处理,消除局部振荡,再利用多项式曲线拟合,预测未来失效时刻,实现滚动轴承RUL预测。预测结果能够较好地接近真实寿命值。
-
公开(公告)号:CN109726524A
公开(公告)日:2019-05-07
申请号:CN201910162042.8
申请日:2019-03-01
Applicant: 哈尔滨理工大学
Abstract: 一种基于CNN和LSTM的滚动轴承剩余使用寿命预测方法,涉及滚动轴承寿命预测领域。针对滚动轴承存在性能退化渐变故障和突发故障两种模式下其剩余使用寿命(RUL)预测困难的问题,该方法首先对滚动轴承原始振动信号作FFT变换,然后将预处理所得到的频域幅值信号进行归一化处理后,并将其作为CNN的输入。利用CNN自动提取数据局部抽象信息以挖掘深层特征,避免传统特征提取方法过于依赖专家经验的问题。之后再将深层特征输入到LSTM网络中,构建趋势性量化健康指标,同时确定失效阈值。最后,运用移动平均法进行平滑处理,消除局部振荡,再利用多项式曲线拟合,预测未来失效时刻,实现滚动轴承RUL预测。预测结果能够较好地接近真实寿命值。
-
公开(公告)号:CN106019648B
公开(公告)日:2019-02-12
申请号:CN201610363500.0
申请日:2016-05-27
Applicant: 哈尔滨理工大学
IPC: G02F1/13 , G02F1/1343
Abstract: 一种基于低电压驱动液晶材料的可调谐太赫兹超材料滤波器及制备方法。要解决现有的太赫兹超材料滤波器的工作波长固定,工作带宽有限,应用范围窄,结构及制备工艺复杂,可靠性低的问题。本发明滤波器为多层平板结构,包括玻璃衬底层、第一金属结构层、绝缘层、金属种子层、第二金属结构层、液晶材料和玻璃盖板;制备方法:一、制备金属结构层;二、制备绝缘层;三、制备金属种子层;四、制备电镀用模具结构;五、制备周期性缝隙金属结构;六、填充液晶材料,盖玻璃盖板。本发明滤波器所需的电压减小、结构简单,调谐范围宽,响应时间快,极化不敏感,化学稳定性好。本发明方法适用于制备低电压驱动液晶材料的可调谐太赫兹超材料滤波器。
-
公开(公告)号:CN206542422U
公开(公告)日:2017-10-03
申请号:CN201720280564.4
申请日:2017-03-21
Applicant: 哈尔滨理工大学
IPC: H04L9/00
Abstract: 本实用新型提供了一种十一维三次混沌模拟电路,属于混沌信号发生器设计技术领域。解决现有低维混沌系统一般存在抗破译能力差、安全性低、保密性较差等问题。该电路包括十一个通道电路:每一个通道电路均由乘法器、反相加法比例运算器、反相积分器、反相器以及电阻、电容组成。该高维混沌模拟电路产生的混沌信号相对更加复杂无规律,系统电路的多个信号变量增强了混沌信号的随机性、复杂性,使系统密钥空间更大,应用于图像加密等领域,可增强系统保密性。
-
-
-
-