-
公开(公告)号:CN115017955A
公开(公告)日:2022-09-06
申请号:CN202210703794.2
申请日:2022-06-21
Applicant: 哈尔滨理工大学
Abstract: 本发明公开了基于半监督图卷积的行星齿轮箱故障诊断方法,本发明涉及旋转机械故障诊断方法领域,本发明为了解决现有的旋转机械故障诊断方法的准确率低的问题。本发明利用自编码器降噪网络对所述原始数据进行降噪处理;对降噪后的数据进行特征提取,得到特征矩阵,对所述特征矩阵进行降维处理;求取所述降维处理后的特征矩阵中各数据之间的无向图,将所述降维后矩阵和数据之间无向图输入半监督图卷积神经网络故障诊断模型中,得到诊断结果。本发明能够对行星齿轮箱故障进行准确诊断。
-
公开(公告)号:CN115017955B
公开(公告)日:2025-04-01
申请号:CN202210703794.2
申请日:2022-06-21
Applicant: 哈尔滨理工大学
IPC: G06F18/24 , G06F18/10 , G06F18/213 , G06F18/214 , G06N3/0464 , G06N3/084 , G06N3/0895
Abstract: 本发明公开了基于半监督图卷积的行星齿轮箱故障诊断方法,本发明涉及旋转机械故障诊断方法领域,本发明为了解决现有的旋转机械故障诊断方法的准确率低的问题。本发明利用自编码器降噪网络对所述原始数据进行降噪处理;对降噪后的数据进行特征提取,得到特征矩阵,对所述特征矩阵进行降维处理;求取所述降维处理后的特征矩阵中各数据之间的无向图,将所述降维后矩阵和数据之间无向图输入半监督图卷积神经网络故障诊断模型中,得到诊断结果。本发明能够对行星齿轮箱故障进行准确诊断。
-
公开(公告)号:CN116662848A
公开(公告)日:2023-08-29
申请号:CN202310379908.7
申请日:2023-04-11
Applicant: 哈尔滨理工大学
IPC: G06F18/24 , G06F18/214 , G06N3/084 , G06N3/0464 , G06F18/10 , G06F18/22
Abstract: 本发明公开了一种基于WOA‑VMD与GAT的滚动轴承故障诊断方法,所述方法包括如下步骤:步骤一、通过WOA优化算法对VMD分解的参数模态个数k和惩罚参数α进行自适应确定,从而对原始信号进行VMD分解,再对分解后的信号采用Pearson相关性分析筛选出其中相关性大的IMF分量,以对信号进行重构,完成信号降噪;步骤二、将Attention与图卷积运算进行结合,构建图注意力神经网络滚动轴承故障诊断模型,对价值信息分配更多的比重,用以优化构建图的信息收集阶段,提高模型故障诊断准确率。通过实验验证表明,相比与MLP、Attention模型和GCN模型,其收敛速度更快,诊断精度更高,且损失值较低。
-
-