-
公开(公告)号:CN107492084B
公开(公告)日:2021-06-25
申请号:CN201710544900.6
申请日:2017-07-06
Applicant: 哈尔滨理工大学
Abstract: 基于随机性的成团细胞核图像合成方法,本发明涉及DNA倍体分析技术中,由于成团细胞核图像稀少导致细胞分类正确率急剧下降的问题。细胞DNA倍体分析技术是一种自动化的病理诊断技术,准确识别各类细胞图像是这一技术的关键。然而,重叠细胞核的训练样本稀少(训练集失衡)导致重叠细胞核图片的识别率较低。为解决这一问题,本发明提出了一种合成重叠细胞图像的方法。该方法采用样本选择使合成的样本更具有代表性;引入随机性控制合成源图像的随机旋转角度和随机重叠程度;根据朗伯比尔定律重构重叠部分的像素,使合成的样本更接近真实样本;最后将合成的样本用于模型训练。本发明应用于解决重叠细胞核的训练样本稀少(训练集失衡)问题。
-
公开(公告)号:CN107492084A
公开(公告)日:2017-12-19
申请号:CN201710544900.6
申请日:2017-07-06
Applicant: 哈尔滨理工大学
CPC classification number: G06T5/50 , G06T7/13 , G06T7/136 , G06T2207/20221 , G06T2207/30004
Abstract: 基于随机性的成团细胞核图像合成方法,本发明涉及DNA倍体分析技术中,由于成团细胞核图像稀少导致细胞分类正确率急剧下降的问题。细胞DNA倍体分析技术是一种自动化的病理诊断技术,准确识别各类细胞图像是这一技术的关键。然而,重叠细胞核的训练样本稀少(训练集失衡)导致重叠细胞核图片的识别率较低。为解决这一问题,本发明提出了一种合成重叠细胞图像的方法。该方法采用样本选择使合成的样本更具有代表性;引入随机性控制合成源图像的随机旋转角度和随机重叠程度;根据朗伯比尔定律重构重叠部分的像素,使合成的样本更接近真实样本;最后将合成的样本用于模型训练。本发明应用于解决重叠细胞核的训练样本稀少(训练集失衡)问题。
-
公开(公告)号:CN107330869A
公开(公告)日:2017-11-07
申请号:CN201710504878.2
申请日:2017-06-28
Applicant: 哈尔滨理工大学
CPC classification number: G06T5/001 , G06T7/11 , G06T2207/30096
Abstract: 重叠细胞分割后的异常像素点重构,本发明涉及DNA倍体分析技术中,重叠细胞分割后出现的像素点异常的问题。DNA倍体分析技术通过图像处理技术测量细胞DNA的相对含量,在癌症诊断方面有着广泛的应用。然而重叠细胞的分割后的像素点异常,导致细胞的纹理、灰度以及最重要的光密度等特征出现异常,在诊断中极易出现误诊。为改善这一问题,本发明提出了一种基于GMM-UBM模型的细胞重叠区域像素重构方法。实验表明,该方法能有效地调整细胞的纹理、灰度、光密度等特征值,减少DNA含量测量的误差,降低异常像素点对分类器识别率的影响。本发明应用于重叠细胞分割后的异常像素点重构。
-
公开(公告)号:CN107330869B
公开(公告)日:2021-04-23
申请号:CN201710504878.2
申请日:2017-06-28
Applicant: 哈尔滨理工大学
Abstract: 重叠细胞分割后的异常像素点重构,本发明涉及DNA倍体分析技术中,重叠细胞分割后出现的像素点异常的问题。DNA倍体分析技术通过图像处理技术测量细胞DNA的相对含量,在癌症诊断方面有着广泛的应用。然而重叠细胞的分割后的像素点异常,导致细胞的纹理、灰度以及最重要的光密度等特征出现异常,在诊断中极易出现误诊。为改善这一问题,本发明提出了一种基于GMM‑UBM模型的细胞重叠区域像素重构方法。实验表明,该方法能有效地调整细胞的纹理、灰度、光密度等特征值,减少DNA含量测量的误差,降低异常像素点对分类器识别率的影响。本发明应用于重叠细胞分割后的异常像素点重构。
-
-
-