-
-
公开(公告)号:CN110837076A
公开(公告)日:2020-02-25
申请号:CN201911127139.1
申请日:2019-11-18
Applicant: 哈尔滨工程大学
IPC: G01S3/802
Abstract: 本发明提供一种基于张量分解的矢量水听器阵列方位估计方法,步骤1:构建矢量水听器的声压和振速分量组成的方向矢量;步骤2:构建矢量水听器阵列的时延矢量;步骤3:将矢量水听器阵列的方向矢量以及时延矢量重构成新的阵列流形张量;步骤4:将矢量水听器阵列接收到的矢量信号重构成张量信号,并对张量信号进行分解和截断处理;步骤5:利用新的阵列流形张量和噪声子空间进行空间谱搜索,空间谱的峰值对应的角度就是入射信号的方位角和俯仰角。本发明解决了传统的方位估计方法在低信噪比时方位估计精度低的缺点,该侧向方法在低信噪比的条件下具有更好的噪声抑制能力,此测向方法具有较高的方位估计精度。
-
-
公开(公告)号:CN112954562B
公开(公告)日:2022-06-28
申请号:CN202110108942.1
申请日:2021-01-27
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于参数激励的声学信号增强器,属于人工声学器件领域。尤其是涉及一种能对声能量进行操控和放大的声学信号增强器,具体为利用参激共振效应对弱的目标声信号进行放大。所述的声学信号增强器由提供交变电场的控制电路和填充了极性电介质的行波管组成,包括声速可控的电介质液体层。本发明联合引入的参数激励的频率和幅值来对目标声信号进行操控和放大,通过调控参数激励的频率来保证对任意频率的目标声信号进行处理。同时解决了已有声学信号增强器对水声频段信号放大能力较弱的问题,可提高声呐系统探测距离和目标识别准确率。
-
公开(公告)号:CN114186509B
公开(公告)日:2024-12-17
申请号:CN202111450474.2
申请日:2021-11-30
Applicant: 哈尔滨工程大学
IPC: G06F30/28 , G06F17/12 , G06F17/15 , G06F17/17 , G06F119/14 , G06F113/08 , G06F111/04 , G06F111/10
Abstract: 本发明提供一种水下运动目标产生的超低频圆周波计算方法,包括以下步骤:步骤1:分析超低频圆周波的特征;步骤2:超低频圆周波的产生原因;步骤3:超低频圆周波计算方法‑多级势法。本发明提供一种新的水下目标探测的思想即通过圆周波探测目标,研究水下运动目标产生的超低频圆周波原理与计算方法,为水下目标探测提供理论依据。
-
公开(公告)号:CN114186509A
公开(公告)日:2022-03-15
申请号:CN202111450474.2
申请日:2021-11-30
Applicant: 哈尔滨工程大学
IPC: G06F30/28 , G06F17/12 , G06F17/15 , G06F17/17 , G06F119/14 , G06F113/08 , G06F111/04 , G06F111/10
Abstract: 本发明提供一种水下运动目标产生的超低频圆周波原理与计算方法,包括以下步骤:步骤1:分析超低频圆周波的特征;步骤2:超低频圆周波的产生原因;步骤3:超低频圆周波计算方法‑多级势法。本发明提供一种新的水下目标探测的思想即通过圆周波探测目标,研究水下运动目标产生的超低频圆周波原理与计算方法,为水下目标探测提供理论依据。
-
公开(公告)号:CN112954562A
公开(公告)日:2021-06-11
申请号:CN202110108942.1
申请日:2021-01-27
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于参数激励的声学信号增强器,属于人工声学器件领域。尤其是涉及一种能对声能量进行操控和放大的声学信号增强器,具体为利用参激共振效应对弱的目标声信号进行放大。所述的声学信号增强器由提供交变电场的控制电路和填充了极性电介质的行波管组成,包括声速可控的电介质液体层。本发明联合引入的参数激励的频率和幅值来对目标声信号进行操控和放大,通过调控参数激励的频率来保证对任意频率的目标声信号进行处理。同时解决了已有声学信号增强器对水声频段信号放大能力较弱的问题,可提高声呐系统探测距离和目标识别准确率。
-
-
-
-
-
-