一种基于神经网络的环境参数确定方法

    公开(公告)号:CN114580478B

    公开(公告)日:2025-04-01

    申请号:CN202210203998.X

    申请日:2022-03-02

    Abstract: 一种基于神经网络的环境参数确定方法,具体涉及一种基于神经网络的水下环境各参数的确定方法,本发明为了解决现有采取LPCC特征提取方法或MFCC特征提取方法获取水下环境参数的准确率低的问题,它包括S1、采集各时段的水下目标辐射噪声及对应的环境参数,将水下目标辐射噪声分为低频信号和高频信号;S2、对采集的各时段的水下目标辐射噪声进行预处理;S3、建立网络模型,将S2中预处理后的各时段的水下目标辐射噪声及对应的环境参数输入网络模型中进行训练,直到loss损失不变,得到训练好的网络模型;S4、采集待确定环境参数的水下目标辐射噪声,经过S2的预处理后,输入S3中得到的训练好的网络模型内,得到环境参数。属于环境参数确定领域。

    一种基于神经网络的环境参数确定方法

    公开(公告)号:CN114580478A

    公开(公告)日:2022-06-03

    申请号:CN202210203998.X

    申请日:2022-03-02

    Abstract: 一种基于神经网络的环境参数确定方法,具体涉及一种基于神经网络的水下环境各参数的确定方法,本发明为了解决现有采取LPCC特征提取方法或MFCC特征提取方法获取水下环境参数的准确率低的问题,它包括S1、采集各时段的水下目标辐射噪声及对应的环境参数,将水下目标辐射噪声分为低频信号和高频信号;S2、对采集的各时段的水下目标辐射噪声进行预处理;S3、建立网络模型,将S2中预处理后的各时段的水下目标辐射噪声及对应的环境参数输入网络模型中进行训练,直到loss损失不变,得到训练好的网络模型;S4、采集待确定环境参数的水下目标辐射噪声,经过S2的预处理后,输入S3中得到的训练好的网络模型内,得到环境参数。属于环境参数确定领域。

    基于特征强化模型的特征提取方法

    公开(公告)号:CN114548180A

    公开(公告)日:2022-05-27

    申请号:CN202210175705.1

    申请日:2022-02-24

    Abstract: 基于特征强化模型的特征提取方法,涉及水下声音特征提取技术领域,针对现有技术中对特征进行集成的时候会丢失特征位置信息的问题,步骤一:设定损失阈值,然后获取训练数据集,并利用训练数据集训练卷积神经网络,当卷积神经网络误差小于等于损失阈值时,提取卷积神经网络池化后的特征矩阵;步骤二:对特征矩阵进行仿射变换;步骤三:针对仿射变换后的特征矩阵,将特征矩阵中局部位置的抗特征变化能力进行加强,得到特征矩阵N;步骤四:将特征矩阵N输入到卷积神经网络的全连接层中再次训练,得到最终特征。本申请有效的解决了现有技术中对特征进行集成的时候会丢失特征位置信息的问题。

Patent Agency Ranking