-
公开(公告)号:CN115169216A
公开(公告)日:2022-10-11
申请号:CN202210574452.5
申请日:2022-05-25
Applicant: 哈尔滨工程大学
IPC: G06F30/27 , G06K9/62 , G06N20/00 , G06F111/08
Abstract: 本发明公开了一种面向水声智能伪装的高鲁棒性的对抗样本生成方法及系统,属于数字图像处理技术和水声信号处理技术领域,其中,该方法具体包括:进行对抗扰动的抗噪能力设计基于训练数据扩张的扰动量增强方法,以扩展训练数据集得到第二增强数据集;将敌方的识别模型作为一个未知黑盒子,根据所述第二增强数据集对其进行黑盒攻击,并采用迭代集成学习方法训练替身模型,得到最优对抗样本。该方法在利用声波与各种谱图的转换机制进一步约束对抗扰动,使其具备人眼不敏感但可欺骗机器学习模型的能力,再针对环境和自身噪声设计数据增强方案,完成对抗样本的抗噪能力建设,并基于集成学习提升对抗样本的可迁移性、提高泛化能力。
-
公开(公告)号:CN115081510A
公开(公告)日:2022-09-20
申请号:CN202210503733.1
申请日:2022-05-10
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种面向水声智能伪装的跨模态高隐蔽对抗样本生成方法及系统,属于数字图像处理技术和水声信号处理技术领域,其中,该方法包括以下步骤:模拟海底混响分布形式,获取我方舰船发出的原始水声信号,并生成初始对抗扰动;对初始对抗扰动中的扰动量进行频段限制,以生成声波对抗样本;利用傅里叶变换处理我方舰船发出的原始水声信号,以生成图像模态对抗样本。该方法使播放的对抗扰动能够同时欺骗声波和图像处理模型,且不引起人耳和人眼的警觉,进而实现水声对抗场景中对敌智能伪装。
-
公开(公告)号:CN114140357B
公开(公告)日:2024-04-19
申请号:CN202111462313.5
申请日:2021-12-02
Applicant: 哈尔滨工程大学
IPC: G06T5/77 , G06T5/50 , G06T5/60 , G06T3/4053 , G06T3/4046 , G06T7/33 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/084
Abstract: 一种基于协同注意力机制的多时相遥感图像云区重建方法,涉及遥感图像处理技术领域,针对现有技术中图像修复法大多是基于背景信息进行像素预测生成,无法准确地还原地貌特征和地物信息的问题,本申请设计了一个具有门控卷积的协同注意层,能够提取和融合关键特征。门控卷积考虑了云和干净像素之间的差异。从而可以使得生成的无云图像分辨率更高,更加接近Ground Truth图像。此外,通过U型结构中的跳转连接和L1损失函数对模型进行优化,一方面跳转结构通过共享低级信息减少了模型的运算量,提升了模型训练的速度,另一方面由于L1损失可以更好地捕捉遥感图像中的低频信息,有助于提高云重建模型的准确度。
-
公开(公告)号:CN114140357A
公开(公告)日:2022-03-04
申请号:CN202111462313.5
申请日:2021-12-02
Applicant: 哈尔滨工程大学
IPC: G06T5/00 , G06T5/50 , G06T7/33 , G06V10/46 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 一种基于协同注意力机制的多时相遥感图像云区重建方法,涉及遥感图像处理技术领域,针对现有技术中图像修复法大多是基于背景信息进行像素预测生成,无法准确地还原地貌特征和地物信息的问题,本申请设计了一个具有门控卷积的协同注意层,能够提取和融合关键特征。门控卷积考虑了云和干净像素之间的差异。从而可以使得生成的无云图像分辨率更高,更加接近Ground Truth图像。此外,通过U型结构中的跳转连接和L1损失函数对模型进行优化,一方面跳转结构通过共享低级信息减少了模型的运算量,提升了模型训练的速度,另一方面由于L1损失可以更好地捕捉遥感图像中的低频信息,有助于提高云重建模型的准确度。
-
公开(公告)号:CN115081510B
公开(公告)日:2024-05-10
申请号:CN202210503733.1
申请日:2022-05-10
Applicant: 哈尔滨工程大学
IPC: G06F18/214 , G06F18/10 , G06F18/213 , G06F18/24 , G06F17/14
Abstract: 本发明公开了一种面向水声智能伪装的跨模态高隐蔽对抗样本生成方法及系统,属于数字图像处理技术和水声信号处理技术领域,其中,该方法包括以下步骤:模拟海底混响分布形式,获取我方舰船发出的原始水声信号,并生成初始对抗扰动;对初始对抗扰动中的扰动量进行频段限制,以生成声波对抗样本;利用傅里叶变换处理我方舰船发出的原始水声信号,以生成图像模态对抗样本。该方法使播放的对抗扰动能够同时欺骗声波和图像处理模型,且不引起人耳和人眼的警觉,进而实现水声对抗场景中对敌智能伪装。
-
公开(公告)号:CN115310513A
公开(公告)日:2022-11-08
申请号:CN202210788764.6
申请日:2022-07-06
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种面向水声智能伪装的对抗样本可解释性研究方法及系统,属于数字图像处理技术和水声信号处理技术领域,其中,该方法包括:从分析输入样本和输出标签在多维空间的分布方式入手,给出超平面对样本空间的分割设定;基于对抗样本与原始样本之间的l0距离和l2距离分别证明对抗样本的存在方式和构成原理,提高对抗样本工作机制的透明度,确保能进行可信的人机交互、功能改进和参数调优。该方法为声学智能伪装技术实现逻辑闭环,保障我方设计者或操作者利用可解释的对抗攻击方法应对敌方的防御手段。
-
-
-
-
-