-
公开(公告)号:CN117746163B
公开(公告)日:2025-03-07
申请号:CN202410098174.X
申请日:2024-01-23
Applicant: 哈尔滨工程大学 , 杭州市滨江区浙工大人工智能创新研究院
IPC: G06V10/764 , G06V10/40 , G06V10/82 , G06V10/52 , G06F18/10 , G06N3/0464 , G06N3/0455 , G06N3/08
Abstract: 一种基于多尺度视觉Transformer的雷达工作模式识别方法,它涉及一种雷达工作模式识别方法。本发明为了解决传统雷达工作模式识别算法全局特征提取能力差,识别功能泛化性差的问题。本发明使用CWD时频变换将雷达脉冲信号转化为时频图,并对样本进行了长度一致化处理,有利于深度学习模型充分提取信号的时频演化规律;该发明采用基于Biformer的多尺度特征提取网络,引入了分层的双层路由注意力机制,可以更好地在捕捉雷达信号时频图的全局和局部特征,能够在有效降低算法的复杂度的同时取得更高的识别准确率。本发明属于数字信号处理技术领域。
-
公开(公告)号:CN116628472B
公开(公告)日:2024-08-30
申请号:CN202310486505.2
申请日:2023-04-28
Applicant: 哈尔滨工程大学
IPC: G06F18/213 , G06F18/241 , G06N3/042 , G06N3/0464
Abstract: 一种基于特征关联的辐射源个体信号图结构映射方法,它涉及一种辐射源个体信号图结构映射方法。本发明为了解决现有图结构映射方法在辐射源个体识别任务上效率低,性能差的问题。本发明的核心在于采用基于特征关联性的图结构映射方法构建个体信号图分类数据集,通过GNN模型实现辐射源个体识别,有效提高识别性能。本发明属于信号识别技术领域。
-
公开(公告)号:CN116628472A
公开(公告)日:2023-08-22
申请号:CN202310486505.2
申请日:2023-04-28
Applicant: 哈尔滨工程大学
IPC: G06F18/213 , G06F18/241 , G06N3/042 , G06N3/0464
Abstract: 一种基于特征关联的辐射源个体信号图结构映射方法,它涉及一种辐射源个体信号图结构映射方法。本发明为了解决现有图结构映射方法在辐射源个体识别任务上效率低,性能差的问题。本发明的核心在于采用基于特征关联性的图结构映射方法构建个体信号图分类数据集,通过GNN模型实现辐射源个体识别,有效提高识别性能。本发明属于信号识别技术领域。
-
公开(公告)号:CN117746163A
公开(公告)日:2024-03-22
申请号:CN202410098174.X
申请日:2024-01-23
Applicant: 哈尔滨工程大学 , 杭州市滨江区浙工大网络空间安全创新研究院
IPC: G06V10/764 , G06V10/40 , G06V10/82 , G06V10/52 , G06F18/10 , G06N3/0464 , G06N3/0455 , G06N3/08
Abstract: 一种基于多尺度视觉Transformer的雷达工作模式识别方法,它涉及一种雷达工作模式识别方法。本发明为了解决传统雷达工作模式识别算法全局特征提取能力差,识别功能泛化性差的问题。本发明使用CWD时频变换将雷达脉冲信号转化为时频图,并对样本进行了长度一致化处理,有利于深度学习模型充分提取信号的时频演化规律;该发明采用基于Biformer的多尺度特征提取网络,引入了分层的双层路由注意力机制,可以更好地在捕捉雷达信号时频图的全局和局部特征,能够在有效降低算法的复杂度的同时取得更高的识别准确率。本发明属于数字信号处理技术领域。
-
-
-