-
公开(公告)号:CN119028436B
公开(公告)日:2025-04-11
申请号:CN202410945326.5
申请日:2024-07-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B25/00 , G16B5/00 , G16B40/00 , G16B30/10 , G06F18/213 , G06N3/042 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于异构网络的多物种蛋白质功能预测方法及系统,所述方法包括:使用ESM‑2模型对蛋白质序列进行特征提取,得到序列特征;构建蛋白质的结构接触图,基于图卷积和层次图池化的结构模型对结构接触图训练,提取结构特征;将序列特征和结构特征进行拼接,根据PPI网络和同源相似性网络构建跨物种的异构网络;在训练阶段,使用结构特征和序列特征在异构网络上传播,并在传播时使用图注意力机制更新节点向量;在预测阶段,加入训练集的GO标签进行网络传播,将蛋白质表示和GO标签的传播结果进行线性组合,得到最终的GO标签预测概率。本发明提高了多物种蛋白质功能预测的预测效果,实现了功能标签的跨物种传播。
-
公开(公告)号:CN117393143B
公开(公告)日:2024-06-25
申请号:CN202311316888.5
申请日:2023-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于图表示学习的环状RNA‑疾病关联预测方法、移动设备及存储介质,该方法包括:基于环状RNA及相关信息构建环状RNA的异构网络,所述异构网络包括环状RNA节点和疾病节点;将异构网络中各个节点的特征随机初始化后输入图表示学习模型,通过所述图表示学习模型按预设流程学习各个节点的表示向量;基于环状RNA节点的表示向量和疾病节点的表示向量的内积确定为对应环状RNA与疾病的关联预测得分。如此,通过图表示学习模型学习异构网络中各个节点的表示向量,再基于环状RNA节点和疾病节点的表示向量的内积确定关联预测得分,提高了异构网络构建的灵活性,使得图表示学习模型能获得更丰富的节点表示,提高了环状RNA‑疾病预测的准确性。
-
公开(公告)号:CN119028436A
公开(公告)日:2024-11-26
申请号:CN202410945326.5
申请日:2024-07-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B25/00 , G16B5/00 , G16B40/00 , G16B30/10 , G06F18/213 , G06N3/042 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于异构网络的多物种蛋白质功能预测方法及系统,所述方法包括:使用ESM‑2模型对蛋白质序列进行特征提取,得到序列特征;构建蛋白质的结构接触图,基于图卷积和层次图池化的结构模型对结构接触图训练,提取结构特征;将序列特征和结构特征进行拼接,根据PPI网络和同源相似性网络构建跨物种的异构网络;在训练阶段,使用结构特征和序列特征在异构网络上传播,并在传播时使用图注意力机制更新节点向量;在预测阶段,加入训练集的GO标签进行网络传播,将蛋白质表示和GO标签的传播结果进行线性组合,得到最终的GO标签预测概率。本发明提高了多物种蛋白质功能预测的预测效果,实现了功能标签的跨物种传播。
-
公开(公告)号:CN117393143A
公开(公告)日:2024-01-12
申请号:CN202311316888.5
申请日:2023-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于图表示学习的环状RNA‑疾病关联预测方法、移动设备及存储介质,该方法包括:基于环状RNA及相关信息构建环状RNA的异构网络,所述异构网络包括环状RNA节点和疾病节点;将异构网络中各个节点的特征随机初始化后输入图表示学习模型,通过所述图表示学习模型按预设流程学习各个节点的表示向量;基于环状RNA节点的表示向量和疾病节点的表示向量的内积确定为对应环状RNA与疾病的关联预测得分。如此,通过图表示学习模型学习异构网络中各个节点的表示向量,再基于环状RNA节点和疾病节点的表示向量的内积确定关联预测得分,提高了异构网络构建的灵活性,使得图表示学习模型能获得更丰富的节点表示,提高了环状RNA‑疾病预测的准确性。
-
-
-