-
公开(公告)号:CN111091199B
公开(公告)日:2023-05-16
申请号:CN201911335678.4
申请日:2019-12-20
Applicant: 哈尔滨工业大学(深圳)
IPC: G06N20/00
Abstract: 本发明公开了一种基于差分隐私的联邦学习方法、装置和存储介质。所述方法包括:S1、将预设的第一模型参数下发至用户端,使所述用户端根据所述第一模型参数,基于差分隐私技术更新所述用户端本地的深度学习模型并返回第二模型参数;其中,所述第一模型参数包括隐私预算;S2、对所述第二模型参数进行参数平均化,得到第三模型参数,并将所述第三模型参数下发至所述用户端;S3、将步骤S1~S2的执行总次数作为模型训练轮次,并当所述模型训练轮次未达到预设阈值时重复执行步骤S1和步骤S2,反之结束模型训练。本发明能够保障数据隐私安全,并提高训练模型的精确度。
-
公开(公告)号:CN111091199A
公开(公告)日:2020-05-01
申请号:CN201911335678.4
申请日:2019-12-20
Applicant: 哈尔滨工业大学(深圳)
IPC: G06N20/00
Abstract: 本发明公开了一种基于差分隐私的联邦学习方法、装置和存储介质。所述方法包括:S1、将预设的第一模型参数下发至用户端,使所述用户端根据所述第一模型参数,基于差分隐私技术更新所述用户端本地的深度学习模型并返回第二模型参数;其中,所述第一模型参数包括隐私预算;S2、对所述第二模型参数进行参数平均化,得到第三模型参数,并将所述第三模型参数下发至所述用户端;S3、将步骤S1~S2的执行总次数作为模型训练轮次,并当所述模型训练轮次未达到预设阈值时重复执行步骤S1和步骤S2,反之结束模型训练。本发明能够保障数据隐私安全,并提高训练模型的精确度。
-