一种情感增强的细粒度情感预测方法、装置、系统及存储介质

    公开(公告)号:CN111475615B

    公开(公告)日:2023-06-20

    申请号:CN202010168893.6

    申请日:2020-03-12

    Abstract: 本发明提供了一种情感增强的细粒度情感预测方法,包括执行以下步骤:步骤1:根据方面词语或属性的特性对数据进行扩建;步骤2:结合对抗训练构造细粒度情感分析对抗网络模型,并且通过共享特征提取器提取所有训练样本的共通情感特征;步骤3:将提取到的共通情感特征和特定方面的情感特征相结合来构造对抗训练多任务学习网络框架,协助模型对数据样本缺乏文本进行细粒度情感识别。本发明的有益效果是:1.本发明所提出的对抗训练多任务学习框架能通过特征提取器和判别器共同学习提取到的共享特征来协助细粒度情感分类模型对输入文本进行细粒度情感预测;2.本发明基于这种对抗训练和多任务学习方法,可以增强数据集不同方面的情感特征表示。

    一种情感增强的细粒度情感预测方法、装置、系统及存储介质

    公开(公告)号:CN111475615A

    公开(公告)日:2020-07-31

    申请号:CN202010168893.6

    申请日:2020-03-12

    Abstract: 本发明提供了一种情感增强的细粒度情感预测方法,包括执行以下步骤:步骤1:根据方面词语或属性的特性对数据进行扩建;步骤2:结合对抗训练构造细粒度情感分析对抗网络模型,并且通过共享特征提取器提取所有训练样本的共通情感特征;步骤3:将提取到的共通情感特征和特定方面的情感特征相结合来构造对抗训练多任务学习网络框架,协助模型对数据样本缺乏文本进行细粒度情感识别。本发明的有益效果是:1.本发明所提出的对抗训练多任务学习框架能通过特征提取器和判别器共同学习提取到的共享特征来协助细粒度情感分类模型对输入文本进行细粒度情感预测;2.本发明基于这种对抗训练和多任务学习方法,可以增强数据集不同方面的情感特征表示。

    情感抽取方法、装置、电子设备以及存储介质

    公开(公告)号:CN118569255A

    公开(公告)日:2024-08-30

    申请号:CN202410399107.1

    申请日:2024-04-01

    Abstract: 本申请公开了一种情感抽取方法、装置、电子设备以及存储介质。该情感抽取方法包括:获取待抽取文本;利用情感抽取模型对待抽取文本进行词特征提取,得到待抽取文本中各词表示之间的上下文表示;基于各词表示以及上下文表示,确定待抽取文本的目标特征表示,目标特征表示表征能够指示情感抽取模型对待抽取文本生成抽取结果的关系信息;对目标特征表示和各词表示进行情感抽取,得到待抽取文本对应的目标抽取结果,目标抽取结果包括情感三元组序列或情感四元组序列。上述方案,能够提高待抽取文本对应的目标抽取结果的准确度。

    隐私保护文本命名实体识别方法、装置、设备及存储介质

    公开(公告)号:CN113486665B

    公开(公告)日:2023-06-20

    申请号:CN202110757350.2

    申请日:2021-07-05

    Abstract: 本发明公开了一种隐私保护文本命名实体识别方法、装置、计算机设备及存储介质,方法包括:接收多个数据持有方发送的多个训练好的教师模型,所述教师模型通过使用源数据进行训练,包括第一预训练网络和第一序列标注层,所述源数据为标注文本数据;根据多个训练好的教师模型,利用无标签的迁移集合进行多教师知识蒸馏从而训练学生模型,所述学生模型包括第二预训练网络和第二序列标注层;利用训练好的学生模型对无标签文本数据的命名实体进行预测。本发明将知识蒸馏应用于数据分散的真实场景,在数据可用不可见的前提下,通过无标签的迁移集合,训练出强大的学生模型,从而在隐私保护的前提下,保证学生模型在命名实体识别任务上的泛化性和准确性。

    一种跨转录因子的转录因子结合位点预测算法及装置

    公开(公告)号:CN110335639B

    公开(公告)日:2021-10-29

    申请号:CN201910511069.3

    申请日:2019-06-13

    Abstract: 本发明提供了一种跨转录因子的转录因子结合位点预测算法及装置,所述方法包括如下步骤:步骤1:预测所有转录因子中能够与DNA结合的氨基酸,称为DNA结合位点,预测的DNA结合位点主要用于衡量不同转录因子的标注数据在目标转录因子模型训练过程中的贡献;步骤2:从由预测的DNA结合位点组成的序列中学习转录因子的表示向量;步骤3:从DNA片段的组蛋白修饰特征中学习DNA片段的高阶依存关系;步骤4:从DNA片段的序列特征中学习DNA片段的低阶依存关系;步骤5:将学习的转录因子向量表示、DNA片段的高阶依存关系和低阶依存关系拼接成特征向量并输入多层感知器中对目标DNA片段分类,判定其是否为目标转录因子的结合位点。

    一种跨转录因子的转录因子结合位点预测算法及装置

    公开(公告)号:CN110335639A

    公开(公告)日:2019-10-15

    申请号:CN201910511069.3

    申请日:2019-06-13

    Abstract: 本发明提供了一种跨转录因子的转录因子结合位点预测算法及装置,所述方法包括如下步骤:步骤1:预测所有转录因子中能够与DNA结合的氨基酸,称为DNA结合位点,预测的DNA结合位点主要用于衡量不同转录因子的标注数据在目标转录因子模型训练过程中的贡献;步骤2:从由预测的DNA结合位点组成的序列中学习转录因子的表示向量;步骤3:从DNA片段的组蛋白修饰特征中学习DNA片段的高阶依存关系;步骤4:从DNA片段的序列特征中学习DNA片段的低阶依存关系;步骤5:将学习的转录因子向量表示、DNA片段的高阶依存关系和低阶依存关系拼接成特征向量并输入多层感知器中对目标DNA片段分类,判定其是否为目标转录因子的结合位点。

    一种关联实体的情感信息表示方法

    公开(公告)号:CN110222185A

    公开(公告)日:2019-09-10

    申请号:CN201910511692.9

    申请日:2019-06-13

    Abstract: 本发明专利涉及一种关联实体的情感信息分类方法。该方法包括步骤一),利用维基百科语料训练大规模的词向量作为文本中词语的通用词向量表示;步骤二),结合强化学习中的Q学习方法针对文本中不同的实体和实体属性对词向量进行微调,使词语在修饰不同实体或实体属性时有不同的向量表示;步骤三),将学习获得的词语情感信息向量表示应用到实体级别文本情感分析任务中。使用该方法能在不使用注意力机制的情况下,有效判别不同实体或实体属性的情感极性。

    结合情感原因发现的文本情感预测学习系统

    公开(公告)号:CN110222342B

    公开(公告)日:2023-05-02

    申请号:CN201910511670.2

    申请日:2019-06-13

    Abstract: 一种文本情感原因发现装置,该装置包括词‑子句层级结构,包含有四部分:词级别编码器、词级别注意力、子句级别编码器、子句级别注意力;其中,词级别编码器,将文本送入词级别编码器,用于捕获词与词之间的序列特征;词级别注意力,通过当前词语的隐状态表示和与之对应的情绪表达词之间的关系来获得词级别的注意力值,用来指示当前词在其所在的子句中所占的重要程度,然后通过权重和累加操作获得每个子句的表示;子句级别注意力,利用一个分类器来获得当前子句是情感原因的概率,并以此作为子句的注意力值,同时将当前子句距离情绪表达词的距离的分布式表示与子句表示拼接;子句级别编码器,通过子句级编码器获取不同子句之间的结构性信息更新子句表示,通过softmax来获得分类特征的概率分布。通过该装置可以帮助机器更加精准地判断人类触发情感的原因。

    一种融合知识图谱的文本立场分析方法、系统及存储介质

    公开(公告)号:CN111159411A

    公开(公告)日:2020-05-15

    申请号:CN201911420245.9

    申请日:2019-12-31

    Abstract: 本发明提供了一种融合知识图谱的文本立场分析方法、系统及存储介质,该文本立场分析方法包括:使用文本向量表示工具将文本与对象表示为向量形式;使用实体链接工具找到文本中出现的实体,并将实体链接至知识图谱中;针对文本中出现的每个实体,建立一个单视角网络对该实体与给定对象以及文本进行建模,得到对应实体的单视角表示向量;将步骤3中到的N个单视角表示向量输入双向循环神经网络中,得到N个多视角融合表示向量;使用多视角注意力网络筛选多视角表示向量,得到最终用于分类的向量;使用分类器对分类的向量进行分类,得到立场类标。本发明的有益效果是:本发明只需要使用者提供(文本,对象,立场)三元组构成的训练数据集,便可自动利用大规模知识图谱中的信息对其进行分析,不需要使用者额外提供背景知识,立场分析性能更佳。

    一种面向社交媒体的在线争辩生成方法、系统及存储介质

    公开(公告)号:CN111339310B

    公开(公告)日:2023-05-16

    申请号:CN201911191509.8

    申请日:2019-11-28

    Abstract: 本发明提供了一种面向社交媒体的在线争辩生成方法、系统及存储介质,该在线争辩生成方法包括:步骤1:收集用户在社交媒体上针对热点事件的在线争辩文本数据,对在线争辩文本数据进行人工标注;步骤2:收集与在线争辩文本数据相关的结构化知识与文本知识;步骤3:结合结构化知识与文本知识,利用在线争辩文本数据训练自然语言生成模型;步骤4:在真实争辩文本中,使用自然语言生成模型生成相应的争辩文本,该争辩文本用于改变用户的观点。本发明的有益效果是:本发明结合知识图谱信息,可以充分利用文本信息中的尝试知识,可以生成更流畅、更具有争辩性的文本。

Patent Agency Ranking