-
公开(公告)号:CN117205954A
公开(公告)日:2023-12-12
申请号:CN202311176850.2
申请日:2023-09-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供一种可见光驱动降解微塑料的复合光催化纳米材料及其制备方法,首先通过反向沉淀方式,使TaCl5与甲醇的反应物(甲醇钽)在沉淀剂氨水的作用下发生逐级水解,转化为Ta的氢氧化物,Ta的氢氧化物经高温热处理得到Ta2O5;Ta2O5进一步与三聚氰胺共同煅烧,生成黑色Ta3N5;其次以钼酸铵和硫脲为生成MoSx的反应原料,借助水热法制备MoSx,并通过添加适量聚乙烯吡咯烷酮,以影响最终生成的MoSx的形貌,使其具备三维球状结构;最后借助水热反应,将含有质量比为1.75:3.8的Ta3N5和MoSx的分散液置于160℃下进行水热反应最终制备得到Ta3N5/MoSx复合光催化纳米材料。制备流程简单,易操作。且Ta3N5/MoSx复合光催化纳米材料在光催化条件下,对聚乙烯‑丙烯酸乙酯具有格外优异的降解和还原效果。
-
公开(公告)号:CN117160499A
公开(公告)日:2023-12-05
申请号:CN202311140953.3
申请日:2023-09-05
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: B01J27/186 , C02F1/50 , B01J23/18 , B01J27/18 , B01J35/00
Abstract: 本发明提供一种用于可见光催化灭活铜绿微囊藻复合材料及其制备方法,制备方法包括以NaBiO3·2H2O和NaOH为反应原料,经水热反应获得黑色固体BiO2‑x;将BiO2‑x超声分散于适量CH3COOAg中,然后滴加适量的磷酸二氢钠(Na2HPO4),得到沉淀物,沉淀物经离心收集、洗涤和真空干燥,得到复合材料—BiO2‑x/Ag3PO4。过通过实验证明,在BiO2‑x/Ag3PO4、单一BiO2‑x、单一Ag3PO4的投加量相同,以及待处理污水中铜绿微囊藻溶液的初始浓度相同的情况下,本发明实施例提供的BiO2‑x/Ag3PO4在5h内铜绿微囊藻的降解效率达到100%,而单一Ag3PO4在5h内对铜绿微囊藻的降解效率为61.4%,单一BiO2‑x在5h内对铜绿微囊藻的降解效率仅为19.8%。相较于单一Ag3PO4,BiO2‑x/Ag3PO4复合光催化纳米材料具有更宽的可见光吸收范围和更强的对铜绿微囊藻的降解能力。
-
公开(公告)号:CN119016069A
公开(公告)日:2024-11-26
申请号:CN202410984265.3
申请日:2024-07-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: B01J27/051 , B01J27/24 , B01J35/39
Abstract: 本发明涉及光催化复合材料制备技术领域,尤其涉及一种基于Ta3N5‑MoSx异质结的光催化复合材料的制备方法,包括步骤:步骤一,Ta3N5纳米颗粒的制备;步骤二,MoSx的制备;步骤三,Ta3N5/MoSx的制备。本发明基于Ta3N5‑MoSx异质结的光催化复合材料的制备方法所制得的光催化复合材料的吸光率高,光电性能优异。
-
公开(公告)号:CN114146708A
公开(公告)日:2022-03-08
申请号:CN202111435974.9
申请日:2021-11-26
Applicant: 哈尔滨工业大学(深圳)
IPC: B01J23/745 , C02F1/30 , C02F101/38 , C02F101/34
Abstract: 本发明提供了一种磁性TiO2基体改性光催化剂及其制备和应用。所述方法包括:步骤1,制备TiO2溶胶;步骤2,将氧化石墨烯和六水合氯化铁溶解于有机醇中,得到第一混合体系,并将醋酸钠、TiO2溶胶、乙二胺依次加入到所述第一混合体系中,得到第二混合体系;步骤3,将所述第二混合体系置于反应容器中,进行水热反应;步骤4,将水热反应后的反应体系进行后处理,得到TiO2‑x‑rGO/Fe3O4纳米材料。本发明提供的可见光催化剂稳定性好、对微污染物降解速率高,且制备方法简单;其中,通过在rGO基元材料的表面附着带有氧空穴的TiO2‑x纳米颗粒及Fe3O4纳米颗粒,拥有了可以吸收全可见光谱的可见光、方便回收重复利用等优点,可适用于新烟碱类农药污染物的高效光催化处理。
-
公开(公告)号:CN112844432A
公开(公告)日:2021-05-28
申请号:CN202011555926.9
申请日:2020-12-24
Applicant: 哈尔滨工业大学(深圳)
IPC: B01J27/24 , C02F1/30 , C02F1/72 , C02F1/70 , C02F101/30 , C02F101/34 , C02F101/38
Abstract: 本申请提供了一种三元磁性复合纳米材料,属于光催化纳米复合材料技术领域与污染物处理领域。本申请的三元磁性复合纳米材料为层状的C3N4‑Cg/ZnO/CNFe,层状的C3N4‑Cg/ZnO/CNFe由片状C3N4‑Cg、片状的ZnO和负载在ZnO与C3N4‑Cg之间的CNFe组成;其中,所述C3N4‑Cg包括g‑C3N4和g‑C3N4边缘处的石墨烯;所述CNFe为包覆铁的碳纳米管。本申请在g‑C3N4中引入了石墨烯、ZnO和CNFe,扩展了g‑C3N4的光吸收范围,由原来的可见光波段扩展至全可见光。
-
公开(公告)号:CN112525635A
公开(公告)日:2021-03-19
申请号:CN202011312649.9
申请日:2020-11-20
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明提供了一种提取微塑料的方法,该方法以洗面奶中的微塑料为目标分离污染物,洗面奶在盐溶液中分散而微塑料漂浮在上层,弃去下层溶液后,再利用有机溶剂对包含塑料的上层液体,进行消泡而微塑料沉淀在下层,弃去上层溶液后,对提取的微塑料进行洗涤、真空抽滤、烘干,最终得到干燥的微塑料。本发明所提供的提取方法,能够高效的消除洗面奶中的胶体及泡沫,且不会对微塑料的物化特征产生影响,解决现有技术中存在的提取过程耗时长、效率低、胶体堵塞滤膜等问题,同时避免使用毒性较大的有机溶剂,保障了实验人员的健康,经济环保,为解决洗面奶中微塑料污染物的分离提供了新方法。
-
公开(公告)号:CN112844432B
公开(公告)日:2023-07-21
申请号:CN202011555926.9
申请日:2020-12-24
Applicant: 哈尔滨工业大学(深圳)
IPC: B01J27/24 , C02F1/30 , C02F1/72 , C02F1/70 , C02F101/30 , C02F101/34 , C02F101/38
Abstract: 本申请提供了一种三元磁性复合纳米材料,属于光催化纳米复合材料技术领域与污染物处理领域。本申请的三元磁性复合纳米材料为层状的C3N4‑Cg/ZnO/CNFe,层状的C3N4‑Cg/ZnO/CNFe由片状C3N4‑Cg、片状的ZnO和负载在ZnO与C3N4‑Cg之间的CNFe组成;其中,所述C3N4‑Cg包括g‑C3N4和g‑C3N4边缘处的石墨烯;所述CNFe为包覆铁的碳纳米管。本申请在g‑C3N4中引入了石墨烯、ZnO和CNFe,扩展了g‑C3N4的光吸收范围,由原来的可见光波段扩展至全可见光。
-
公开(公告)号:CN112525635B
公开(公告)日:2022-01-04
申请号:CN202011312649.9
申请日:2020-11-20
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明提供了一种提取微塑料的方法,该方法以洗面奶中的微塑料为目标分离污染物,洗面奶在盐溶液中分散而微塑料漂浮在上层,弃去下层溶液后,再利用有机溶剂对包含塑料的上层液体,进行消泡而微塑料沉淀在下层,弃去上层溶液后,对提取的微塑料进行洗涤、真空抽滤、烘干,最终得到干燥的微塑料。本发明所提供的提取方法,能够高效的消除洗面奶中的胶体及泡沫,且不会对微塑料的物化特征产生影响,解决现有技术中存在的提取过程耗时长、效率低、胶体堵塞滤膜等问题,同时避免使用毒性较大的有机溶剂,保障了实验人员的健康,经济环保,为解决洗面奶中微塑料污染物的分离提供了新方法。
-
公开(公告)号:CN112642459A
公开(公告)日:2021-04-13
申请号:CN202011556000.1
申请日:2020-12-24
Applicant: 哈尔滨工业大学(深圳)
IPC: B01J27/24 , C02F1/30 , C02F1/72 , C02F101/34
Abstract: 本申请提供了一种高级氧化催化剂及其制备方法和应用,属于光催化纳米复合材料技术领域与污染物处理领域。该高级氧化催化剂为层状的C3N4‑Cg/ZnO,层状的C3N4‑Cg/ZnO由层状的C3N4‑Cg和片状ZnO组装而成;其中,C3N4‑Cg由g‑C3N4和g‑C3N4边缘处的石墨烯组成。本申请的高级氧化催化剂ZnO/C3N4‑Cg异质结构由于C3N4‑Cg的边缘石墨烯化了,使其具有更高的可见光光催化性能,在可见光区域内对水中有机污染物具有很好的降解效果。本申请中首先将碳氮源分两步煅烧制备了C3N4‑Cg,采用超声浸渍法将制备C3N4‑Cg与ZnO复合,得到了分散性高的高级氧化催化剂ZnO/C3N4‑Cg。本申请的超声浸渍无需高温煅烧,制备过程简单,且超声分散过程中并未破坏C3N4‑Cg的层状结构,ZnO/C3N4‑Cg的层状结构提高了对太阳光的利用率,增强了ZnO/C3N4‑Cg的光催化效率。
-
公开(公告)号:CN116393171A
公开(公告)日:2023-07-07
申请号:CN202310329508.5
申请日:2023-03-24
Applicant: 哈尔滨工业大学(深圳)
IPC: B01J31/06 , C02F1/30 , B01J37/10 , B01J31/28 , C02F101/30
Abstract: 本发明提供一种Cu9S5基复合光催化纳米材料及制备方法和应用,包括:S1、将摩尔比为2:2:1的乙酸铜、硫脲和聚乙烯吡咯烷酮溶解于适量聚乙二醇后,放入反应釜中进行水热反应,控制所述水热反应的温度为150‑180℃,时间为15‑18h,反应产物经洗涤、真空干燥得到Cu9S5;S2、将所述Cu9S5溶解于去离子水中,进一步加入吡咯单体混合均匀得到混合溶液,继续向混合溶液中逐滴加物质的量是所述吡咯单体2.5倍的FeCl3溶液,搅拌使其发生反应,反应产物经洗涤、真空干燥得到Cu9S5与PPy的质量比为1:1‑7的所述Cu9S5基复合光催化纳米材料Cu9S5/PPy。该结构能在全光谱、可见光和近红外光催化体系下,对以雷尼替丁为代表的组胺H2受体拮抗剂的降解效果尤其显著,且具有稳定性好、可重复利用的特点。
-
-
-
-
-
-
-
-
-