-
公开(公告)号:CN114035858B
公开(公告)日:2024-02-20
申请号:CN202111254423.2
申请日:2021-10-27
Applicant: 哈尔滨工业大学 , 北京机电工程总体设计部
Abstract: 本发明公开了一种基于深度强化学习的无小区大规模MIMO下移动边缘计算的分布式计算卸载方法,属于移动边缘计算领域,包括:设置CF‑MEC训练环境;基于CF‑MEC训练环境,使用M/M/1排队论模型生成计算任务;在每个用户设备上构建深度Q网络,利用计算任务对被分配到任务的用户设备上的深度Q网络进行训练,直至贪婪策略的概率趋近于1,训练结束得到训练后的深度Q网络;将待测数据输入训练后的深度Q网络中,使用户设备对边缘服务器进行独立计算卸载决策。该方法通过在每个用户设备上部署训练好的深度Q网络,用户可以自行根据网络中的相关信息进行卸载决策,从而尽可能降低自身运行计算密集型任务的时延,提高用户体验。
-
公开(公告)号:CN113342529B
公开(公告)日:2024-03-29
申请号:CN202110679260.6
申请日:2021-06-18
Applicant: 哈尔滨工业大学 , 北京机电工程总体设计部
Abstract: 本发明提出了基于强化学习的无小区大规模多天线架构下移动边缘计算卸载方法,方法包括:设置网络中CF‑MEC环境参数,确定用户设备UE与AP之间的数量关系;计算密集型任务的生成,使整个网络的时延tall最小化;定义动作、状态和奖励,训练深度Q网络,并保存网络模型;本发明的方法运行在和所有AP都相连的CPU上;并且在无小区大规模多天线架构中,每个AP都会将关于某个特定接收信号的局部软判决传输至CPU进行最终的综合判决,因此在CPU处可以获得全部的上行信号,同时在CPU处运行的本方法能够获得所有的卸载任务信息,并为它们一一选择合适的服务器来最优化整个网络所经历的卸载时延。
-
公开(公告)号:CN114035858A
公开(公告)日:2022-02-11
申请号:CN202111254423.2
申请日:2021-10-27
Applicant: 哈尔滨工业大学 , 北京机电工程总体设计部
Abstract: 本发明公开了一种基于深度强化学习的无小区大规模MIMO下移动边缘计算的分布式计算卸载方法,属于移动边缘计算领域,包括:设置CF‑MEC训练环境;基于CF‑MEC训练环境,使用M/M/1排队论模型生成计算任务;在每个用户设备上构建深度Q网络,利用计算任务对被分配到任务的用户设备上的深度Q网络进行训练,直至贪婪策略的概率趋近于1,训练结束得到训练后的深度Q网络;将待测数据输入训练后的深度Q网络中,使用户设备对边缘服务器进行独立计算卸载决策。该方法通过在每个用户设备上部署训练好的深度Q网络,用户可以自行根据网络中的相关信息进行卸载决策,从而尽可能降低自身运行计算密集型任务的时延,提高用户体验。
-
公开(公告)号:CN113342529A
公开(公告)日:2021-09-03
申请号:CN202110679260.6
申请日:2021-06-18
Applicant: 哈尔滨工业大学 , 北京机电工程总体设计部
Abstract: 本发明提出了基于强化学习的无小区大规模多天线架构下移动边缘计算卸载方法,方法包括:设置网络中CF‑MEC环境参数,确定用户设备UE与AP之间的数量关系;计算密集型任务的生成,使整个网络的时延tall最小化;定义动作、状态和奖励,训练深度Q网络,并保存网络模型;本发明的方法运行在和所有AP都相连的CPU上;并且在无小区大规模多天线架构中,每个AP都会将关于某个特定接收信号的局部软判决传输至CPU进行最终的综合判决,因此在CPU处可以获得全部的上行信号,同时在CPU处运行的本方法能够获得所有的卸载任务信息,并为它们一一选择合适的服务器来最优化整个网络所经历的卸载时延。
-
-
-