-
公开(公告)号:CN111667019B
公开(公告)日:2023-03-24
申请号:CN202010581348.X
申请日:2020-06-23
Applicant: 哈尔滨工业大学
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/047 , G06N3/084
Abstract: 基于可变形分离卷积的高光谱图像分类方法,属于图像处理技术领域,本发明为解决现有高光谱图像分类方法精度低的问题。它包括:将高光谱图像每个像素点的r×r×d邻域的图像数据作为神经网络的输入,r表示空间大小,d表示高光谱图像的波段数;对输入的高光谱图像经过深度分离卷积提取图像低层次的特征,获得特征图;采用加入可变形运算的分离卷积学习特征图对应的偏置,获得自适应图像的空间分布,再采用光谱卷积运算提取深度的特征;将深度特征输入神经网络的全连接层和softmax回归层预测每个类的概率分布,完成图像分类。本发明用于对高光谱遥感图像进行分类。
-
公开(公告)号:CN111667019A
公开(公告)日:2020-09-15
申请号:CN202010581348.X
申请日:2020-06-23
Applicant: 哈尔滨工业大学
Abstract: 基于可变形分离卷积的高光谱图像分类方法,属于图像处理技术领域,本发明为解决现有高光谱图像分类方法精度低的问题。它包括:将高光谱图像每个像素点的r×r×d邻域的图像数据作为神经网络的输入,r表示空间大小,d表示高光谱图像的波段数;对输入的高光谱图像经过深度分离卷积提取图像低层次的特征,获得特征图;采用加入可变形运算的分离卷积学习特征图对应的偏置,获得自适应图像的空间分布,再采用光谱卷积运算提取深度的特征;将深度特征输入神经网络的全连接层和softmax回归层预测每个类的概率分布,完成图像分类。本发明用于对高光谱遥感图像进行分类。
-