-
公开(公告)号:CN110210420A
公开(公告)日:2019-09-06
申请号:CN201910487219.1
申请日:2019-06-05
Applicant: 哈尔滨工业大学
Abstract: 基于融合高光谱图像和DSM数据的分类方法,涉及高光谱图像信息技术处理领域。解决了现有像素级融合方法会损失高光谱的光谱信息,很难实现高光谱图像的空间和光谱信息的联合利用,此外,在融合过程中,会存在不同程度的光谱失真的问题。分类方法包括如下步骤:步骤一、通过双支神经网络同时对高光谱图像和LiDAR衍生的DSM数据进行特征提取,获得高光谱图像的空间-光谱联合信息Fspec-spat和DSM数据的多尺度高程信息Felv;步骤二、将Fspec-spat和Felv进行全连接,从而实现空间-光谱联合信息Fspec-spat和多尺度高程信息Felv的特征融合,获得融合后的数据信息Fall;步骤三、通过分类器对数据信息Fall进行分类,获得样本类别标签,从而完成对融合后的数据信息Fall的分类。主要用于进行地物分类。
-
公开(公告)号:CN107590816A
公开(公告)日:2018-01-16
申请号:CN201710806824.1
申请日:2017-09-08
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及水体信息提取及拟合方法,具体涉及一种基于遥感图像的水体信息拟合方法,本发明为了解决现有的常规测量很难及时掌握水体变化及水质变化情况,且常规测量有可能无法发现一些污染源和污染源的特征的缺点,而提出一种基于遥感图像的水体信息拟合方法,包括:使用水体指数法对遥感图像进行处理,得到处理后的图像;对处理后的图像使用二维Otsu阈值分割,得到阈值分割结果;将阈值分割结果与处理后的图像取交集,确定取交集后的图像的光反射率;选取函数模型,使用光反射率及函数模型对溶氧量和高锰酸盐分别进行计算,得到溶氧量的拟合程度以及高锰酸盐的拟合程度;根据预设的标准分别选取拟合程度最优的进行拟合。本发明适用于水体信息拟合。
-
公开(公告)号:CN107590816B
公开(公告)日:2021-06-15
申请号:CN201710806824.1
申请日:2017-09-08
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及水体信息提取及拟合方法,具体涉及一种基于遥感图像的水体信息拟合方法,本发明为了解决现有的常规测量很难及时掌握水体变化及水质变化情况,且常规测量有可能无法发现一些污染源和污染源的特征的缺点,而提出一种基于遥感图像的水体信息拟合方法,包括:使用水体指数法对遥感图像进行处理,得到处理后的图像;对处理后的图像使用二维Otsu阈值分割,得到阈值分割结果;将阈值分割结果与处理后的图像取交集,确定取交集后的图像的光反射率;选取函数模型,使用光反射率及函数模型对溶氧量和高锰酸盐分别进行计算,得到溶氧量的拟合程度以及高锰酸盐的拟合程度;根据预设的标准分别选取拟合程度最优的进行拟合。本发明适用于水体信息拟合。
-
-