一种基于节点选择的异构图迁移学习方法

    公开(公告)号:CN117217295A

    公开(公告)日:2023-12-12

    申请号:CN202311176924.2

    申请日:2023-09-13

    Abstract: 本发明公开了一种基于节点选择的异构图迁移学习方法,涉及迁移学习技术领域,用以对源网络中的节点进行数值量化评估并选择与目标网络更相关且具有高质量的节点,进而提高模型在目标网络上的性能。本发明的技术要点包括:利用特定语义的特征提取器聚合基于元路径的邻居信息,用特定语义的分类器对不同语义的特征表示进行分类,同时使用最大均值差异距离和L2正则化来对齐源网络和目标网络的分布,将得到的选择向量加入到各损失函数中,来学习具有标签可分辨性和跨网络一致性的节点嵌入表示,用于对目标网络中的节点进行标签分类预测,所述方法包括三部分,即特征提取、节点标签分类和分层域对齐。实验结果显示本发明相对于基线方法表现更显著。

Patent Agency Ranking