-
公开(公告)号:CN110668822A
公开(公告)日:2020-01-10
申请号:CN201911106719.2
申请日:2019-11-13
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/56 , C04B35/645
Abstract: 本发明涉及一种反应热压烧结法低温制备二硼化物-碳化物固溶体复相陶瓷的方法,属于复相陶瓷材料技术领域。本申请解决了现有二硼化物-碳化物复相陶瓷烧结温度较高的问题。本发明的方法选择能够发生固相交换的过渡金属二硼化物和碳化物,采用高能球磨工艺制备复合粉体,在真空或惰性气氛保护,进行反应热压烧结制备得到致密的二硼化物-碳化物固溶体复相陶瓷。本方法充分利用了烧结过程中固相反应及其固溶耦合协同过程,与传统直接采用目标二硼化物和碳化物粉体制备复相陶瓷材料热压烧结工艺相比,能够降低材料烧结温度250℃~400℃。且低温烧结保证了材料晶粒尺寸均匀细小,得到的复相陶瓷的强度和韧性均得到显著提升。
-
公开(公告)号:CN114262229B
公开(公告)日:2022-09-16
申请号:CN202210003862.4
申请日:2022-01-04
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/56 , C04B35/622 , C04B35/64
Abstract: 一种高强韧二硼化物‑碳化物复相高熵陶瓷的制备方法和应用,它属于陶瓷材料技术领域,具体涉及一种高强韧的二硼化物‑碳化物复相高熵陶瓷材料的制备方法和应用。本发明的目的是要解决现有单相高熵陶瓷材料烧结困难,致密度低和断裂韧性差,限制了其应用的问题。方法:制备二硼化物粉体和碳化钛的混合粉末;二、热压烧结。一种高强韧二硼化物‑碳化物复相高熵陶瓷在核反应堆和超高温领域中应用。本发明制备的复相陶瓷的致密度均大于97%,强度和韧性均得到显著提升,室温下陶瓷的硬度为35~40GPa,三点弯曲强度为800~1100MPa,断裂韧性为6~8MPa·m1/2。本发明可获得一种高强韧二硼化物‑碳化物复相高熵陶瓷。
-
公开(公告)号:CN118084495B
公开(公告)日:2024-10-29
申请号:CN202410151110.1
申请日:2024-02-02
Applicant: 哈尔滨工业大学
IPC: C04B35/56 , C04B35/622 , C04B35/63 , C04B35/626 , C04B35/645 , C04B35/64
Abstract: 一种高强韧硬(TiZrVNb)Cx复相多组元碳化物陶瓷材料的制备方法,它属于陶瓷材料技术领域。本发明的目的是要解决现有单相多组元碳化物陶瓷的力学性能难以进一步提升的技术问题。方法:一、称取所需粉体;二、混合;三、烧结;四、脱模。本发明制备的高强韧硬(TiZrVNb)Cx复相多组元碳化物陶瓷材料为复相面心立方结构陶瓷,具有相分解特征,晶粒尺寸细小。本发明制备的一种高强韧硬(TiZrVNb)Cx复相多组元碳化物陶瓷材料密度均高于98.7%,室温下硬度为35~40GPa,三点弯曲强度为600~800MPa,断裂韧性为3.2~5.4MPa·m1/2。能够满足在核反应堆和超高温领域的工作需求。
-
公开(公告)号:CN118005400B
公开(公告)日:2024-10-29
申请号:CN202410151111.6
申请日:2024-02-02
Applicant: 哈尔滨工业大学
IPC: C04B35/56 , C04B35/622 , C04B35/63 , C04B35/626 , C04B35/64 , C04B35/645
Abstract: 一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,它属于特种陶瓷材料技术领域。本发明的目的是要解决现有高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷粉体普遍存在致密度低、杂质多或工艺流程复杂且可控程度低,冷焊和易出现的氧污染的问题。方法:一、称取所需粉体;二、混合;三、烧结。本发明工艺流程简单、生产效率高,能够在较大范围内实现非化学计量比多组元碳化物固溶体陶瓷的碳空位含量精准调控。本发明制备的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的相对密度>97%,室温硬度为25~35GPa,模量为400~500GPa,断裂韧性为3~5MPa·m1/2。
-
公开(公告)号:CN114262229A
公开(公告)日:2022-04-01
申请号:CN202210003862.4
申请日:2022-01-04
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/56 , C04B35/622 , C04B35/64
Abstract: 一种高强韧二硼化物‑碳化物复相高熵陶瓷的制备方法和应用,它属于陶瓷材料技术领域,具体涉及一种高强韧的二硼化物‑碳化物复相高熵陶瓷材料的制备方法和应用。本发明的目的是要解决现有单相高熵陶瓷材料烧结困难,致密度低和断裂韧性差,限制了其应用的问题。方法:制备二硼化物粉体和碳化钛的混合粉末;二、热压烧结。一种高强韧二硼化物‑碳化物复相高熵陶瓷在核反应堆和超高温领域中应用。本发明制备的复相陶瓷的致密度均大于97%,强度和韧性均得到显著提升,室温下陶瓷的硬度为35~40GPa,三点弯曲强度为800~1100MPa,断裂韧性为6~8MPa·m1/2。本发明可获得一种高强韧二硼化物‑碳化物复相高熵陶瓷。
-
公开(公告)号:CN118084495A
公开(公告)日:2024-05-28
申请号:CN202410151110.1
申请日:2024-02-02
Applicant: 哈尔滨工业大学
IPC: C04B35/56 , C04B35/622 , C04B35/63 , C04B35/626 , C04B35/645 , C04B35/64
Abstract: 一种高强韧硬(TiZrVNb)Cx复相多组元碳化物陶瓷材料的制备方法,它属于陶瓷材料技术领域。本发明的目的是要解决现有单相多组元碳化物陶瓷的力学性能难以进一步提升的技术问题。方法:一、称取所需粉体;二、混合;三、烧结;四、脱模。本发明制备的高强韧硬(TiZrVNb)Cx复相多组元碳化物陶瓷材料为复相面心立方结构陶瓷,具有相分解特征,晶粒尺寸细小。本发明制备的一种高强韧硬(TiZrVNb)Cx复相多组元碳化物陶瓷材料密度均高于98.7%,室温下硬度为35~40GPa,三点弯曲强度为600~800MPa,断裂韧性为3.2~5.4MPa·m1/2。能够满足在核反应堆和超高温领域的工作需求。
-
公开(公告)号:CN118005400A
公开(公告)日:2024-05-10
申请号:CN202410151111.6
申请日:2024-02-02
Applicant: 哈尔滨工业大学
IPC: C04B35/56 , C04B35/622 , C04B35/63 , C04B35/626 , C04B35/64 , C04B35/645
Abstract: 一种高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的制备方法,它属于特种陶瓷材料技术领域。本发明的目的是要解决现有高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷粉体普遍存在致密度低、杂质多或工艺流程复杂且可控程度低,冷焊和易出现的氧污染的问题。方法:一、称取所需粉体;二、混合;三、烧结。本发明工艺流程简单、生产效率高,能够在较大范围内实现非化学计量比多组元碳化物固溶体陶瓷的碳空位含量精准调控。本发明制备的高碳空位含量的非化学计量比多组元碳化物固溶体陶瓷的相对密度>97%,室温硬度为25~35GPa,模量为400~500GPa,断裂韧性为3~5MPa·m1/2。
-
公开(公告)号:CN114394837A
公开(公告)日:2022-04-26
申请号:CN202210118312.7
申请日:2022-02-08
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/622 , C04B35/64 , C04B35/63
Abstract: 一种抗氧化性的二硼化物‑碳化物固溶体陶瓷的制备方法和应用。它属于陶瓷材料技术领域,具体涉及一种具有抗氧化性的二硼化物‑碳化物固溶体陶瓷材料的制备方法和应用。本发明的目的是要解决现有二硼化物‑碳化物复合材料的抗氧化性能较低,这严重限制了该类材料在高温氧化性气温下的应用的问题。方法:一、制备二硼化锆、碳化钛和碳化硅的混合粉末;二、热压烧结。一种抗氧化性的二硼化物‑碳化物固溶体陶瓷在超高温抗氧化领域中应用。本发明制备的复相陶瓷的致密度均大于99%,强度和韧性均得到显著提升,室温硬度为30~40GPa,三点弯曲强度为900~1500MPa,断裂韧性为5~8MPa·m1/2。
-
公开(公告)号:CN110668822B
公开(公告)日:2021-10-08
申请号:CN201911106719.2
申请日:2019-11-13
Applicant: 哈尔滨工业大学
IPC: C04B35/58 , C04B35/56 , C04B35/645
Abstract: 本发明涉及一种反应热压烧结法低温制备二硼化物‑碳化物固溶体复相陶瓷的方法,属于复相陶瓷材料技术领域。本申请解决了现有二硼化物‑碳化物复相陶瓷烧结温度较高的问题。本发明的方法选择能够发生固相交换的过渡金属二硼化物和碳化物,采用高能球磨工艺制备复合粉体,在真空或惰性气氛保护,进行反应热压烧结制备得到致密的二硼化物‑碳化物固溶体复相陶瓷。本方法充分利用了烧结过程中固相反应及其固溶耦合协同过程,与传统直接采用目标二硼化物和碳化物粉体制备复相陶瓷材料热压烧结工艺相比,能够降低材料烧结温度250℃~400℃。且低温烧结保证了材料晶粒尺寸均匀细小,得到的复相陶瓷的强度和韧性均得到显著提升。
-
-
-
-
-
-
-
-