-
公开(公告)号:CN110129044B
公开(公告)日:2022-04-15
申请号:CN201910420722.5
申请日:2019-05-20
Applicant: 哈尔滨工业大学
IPC: C09K11/65 , B82Y20/00 , B82Y40/00 , H01M4/583 , H01M4/62 , H01M4/66 , H01M4/86 , H01M4/88 , H01M10/0525 , H01M10/054 , H01M12/06
Abstract: 一种以生物质为碳源的石墨烯量子点制备方法及其应用,本发明涉及一种以生物质为碳源的石墨烯量子点制备方法及其应用。本发明的目的是为了解决能源转换‑存储体系普遍存在电荷传输受限、动力学缓慢等所导致的能量转换效率和储能密度较低的问题。本发明方法为:一、制备生物质前驱液;二、通过水热法或者微波法对生物质前驱液进行预处理;三、然后经过离心、过滤、透析操作制备石墨烯量子点;四、将石墨烯量子点负载到多孔支撑体上制得石墨烯量子点复合材料应用于能源转换‑存储体系中。本发明制得石墨烯量子点有极高的催化活性,可以在极小载量下获得极高电池性能,有望取代价格昂贵且储量稀少的贵金属催化剂,本发明应用于能源转换‑存储领域。
-
公开(公告)号:CN108461812A
公开(公告)日:2018-08-28
申请号:CN201810410719.0
申请日:2018-05-02
Applicant: 哈尔滨工业大学
IPC: H01M10/0562
Abstract: 具有对称梯度孔结构的固体电解质陶瓷材料及其制备方法和应用,涉及一种固体电解质陶瓷材料及其制备方法和应用。是要解决现有固体电解质材料的锂离子电导率低,固态电解质层厚度大,电池内阻过大的问题。固体电解质陶瓷材料包括三层结构,中间为致密层,两侧为多孔层,所述多孔层的孔径呈梯度排列,孔径沿远离致密层方向依次增加,在多孔层形成依次渐变的梯度孔隙结构。方法:一、采用固相烧结法、溶胶-凝胶法、甘氨酸燃烧法或共沉淀法制备粉体;二、制备电解质;三、制备致密电解质薄片;四、酸刻蚀;五、在三层结构陶瓷的一个面上均匀沉积电子导电层,得到三层结构的固体电解质陶瓷材料。本发明用于陶瓷材料领域。
-
公开(公告)号:CN110129044A
公开(公告)日:2019-08-16
申请号:CN201910420722.5
申请日:2019-05-20
Applicant: 哈尔滨工业大学
IPC: C09K11/65 , B82Y20/00 , B82Y40/00 , H01M4/583 , H01M4/62 , H01M4/66 , H01M4/86 , H01M4/88 , H01M10/0525 , H01M10/054 , H01M12/06
Abstract: 一种以生物质为碳源的石墨烯量子点制备方法及其应用,本发明涉及一种以生物质为碳源的石墨烯量子点制备方法及其应用。本发明的目的是为了解决能源转换-存储体系普遍存在电荷传输受限、动力学缓慢等所导致的能量转换效率和储能密度较低的问题。本发明方法为:一、制备生物质前驱液;二、通过水热法或者微波法对生物质前驱液进行预处理;三、然后经过离心、过滤、透析操作制备石墨烯量子点;四、将石墨烯量子点负载到多孔支撑体上制得石墨烯量子点复合材料应用于能源转换-存储体系中。本发明制得石墨烯量子点有极高的催化活性,可以在极小载量下获得极高电池性能,有望取代价格昂贵且储量稀少的贵金属催化剂,本发明应用于能源转换-存储领域。
-
公开(公告)号:CN108461812B
公开(公告)日:2020-10-13
申请号:CN201810410719.0
申请日:2018-05-02
Applicant: 哈尔滨工业大学
IPC: H01M10/0562
Abstract: 具有对称梯度孔结构的固体电解质陶瓷材料及其制备方法和应用,涉及一种固体电解质陶瓷材料及其制备方法和应用。是要解决现有固体电解质材料的锂离子电导率低,固态电解质层厚度大,电池内阻过大的问题。固体电解质陶瓷材料包括三层结构,中间为致密层,两侧为多孔层,所述多孔层的孔径呈梯度排列,孔径沿远离致密层方向依次增加,在多孔层形成依次渐变的梯度孔隙结构。方法:一、采用固相烧结法、溶胶‑凝胶法、甘氨酸燃烧法或共沉淀法制备粉体;二、制备电解质;三、制备致密电解质薄片;四、酸刻蚀;五、在三层结构陶瓷的一个面上均匀沉积电子导电层,得到三层结构的固体电解质陶瓷材料。本发明用于陶瓷材料领域。
-
-
-