-
公开(公告)号:CN108398268A
公开(公告)日:2018-08-14
申请号:CN201810214288.0
申请日:2018-03-15
Applicant: 哈尔滨工业大学
CPC classification number: G01M13/045 , G06K9/0051 , G06N3/084
Abstract: 一种基于堆叠去噪自编码器和自组织映射的轴承性能退化评估方法,它用于评估轴承退化技术领域。本发明解决了传统HI曲线构建中存在的提取退化特征需依赖大量专家经验和有监督训练,标签选择需依赖人工参与的问题。本发明的6个去噪自编码机构建堆叠去噪自编码器来对原始振动信号数据进行多层的特征提取,训练集数据对网络进行预训练后利用BP算法微调参数,将输出的100维特征输入SOM网络训练得到各时间点对应的HI,并构建训练集的HI曲线;将测试集数据输入训练好的堆叠去噪自编码器和SOM网络中得到各时间点处的HI,并构建HI曲线;分别对训练集和测试集的HI曲线进行平滑处理,获得平滑处理后的HI曲线。本发明可以应用于评估轴承性能退化领域用。
-
公开(公告)号:CN106908736A
公开(公告)日:2017-06-30
申请号:CN201710161815.1
申请日:2017-03-17
Applicant: 哈尔滨工业大学
IPC: G01R31/36
CPC classification number: G01R31/3651
Abstract: 基于深度置信网和相关向量机融合的锂电池剩余寿命预测方法,涉及一种锂离子电池循环寿命预测技术,为了解决现有锂电池剩余寿命预测方法依赖精确的物理模型或复杂的信号处理技术,需要昂贵的投入,或现有方法基于浅层结构,这会限制故障预测的性能并且容易遭受维数灾难的问题。获得依据充放电周期的锂电池容量退化数据集,对数据进行预处理,构建DBN和RVM的融合模型,训练DBN模型和RVM模型,采用训练结束的DBN和RVM的融合模型预测锂电池剩余寿命。本发明适用于预测锂电池剩余寿命。
-
公开(公告)号:CN108398268B
公开(公告)日:2020-06-09
申请号:CN201810214288.0
申请日:2018-03-15
Applicant: 哈尔滨工业大学
IPC: G01M13/045 , G06K9/00 , G06N3/08
Abstract: 一种基于堆叠去噪自编码器和自组织映射的轴承性能退化评估方法,它用于评估轴承退化技术领域。本发明解决了传统HI曲线构建中存在的提取退化特征需依赖大量专家经验和有监督训练,标签选择需依赖人工参与的问题。本发明的6个去噪自编码机构建堆叠去噪自编码器来对原始振动信号数据进行多层的特征提取,训练集数据对网络进行预训练后利用BP算法微调参数,将输出的100维特征输入SOM网络训练得到各时间点对应的HI,并构建训练集的HI曲线;将测试集数据输入训练好的堆叠去噪自编码器和SOM网络中得到各时间点处的HI,并构建HI曲线;分别对训练集和测试集的HI曲线进行平滑处理,获得平滑处理后的HI曲线。本发明可以应用于评估轴承性能退化领域用。
-
公开(公告)号:CN106908736B
公开(公告)日:2019-02-22
申请号:CN201710161815.1
申请日:2017-03-17
Applicant: 哈尔滨工业大学
IPC: G01R31/367
Abstract: 锂电池剩余寿命预测方法,涉及一种锂离子电池循环寿命预测技术,为了解决现有锂电池剩余寿命预测方法依赖精确的物理模型或复杂的信号处理技术,需要昂贵的投入,或现有方法基于浅层结构,这会限制故障预测的性能并且容易遭受维数灾难的问题。获得依据充放电周期的锂电池容量退化数据集,对数据进行预处理,构建DBN和RVM的融合模型,训练DBN模型和RVM模型,采用训练结束的DBN和RVM的融合模型预测锂电池剩余寿命。本发明适用于预测锂电池剩余寿命。
-
公开(公告)号:CN109000930A
公开(公告)日:2018-12-14
申请号:CN201810565712.6
申请日:2018-06-04
Applicant: 哈尔滨工业大学
IPC: G01M15/14
Abstract: 一种基于堆叠去噪自编码器的涡轮发动机性能退化评估方法,它用于发动机性能退化评估技术领域。本发明解决了传统多传感器数据选择需要依赖复杂信息评价准则,HI构建时提取退化特征需依赖大量信号处理技术及专家经验,有监督训练方式标签选择需依赖人工参与,方法通用性不足的问题。本发明的4个去噪自编码机构建堆叠去噪自编码器来对输入数据进行单个节点值提取,训练集数据对网络进行预训练后利用BP算法微调参数,将提取的单个节点值作为各循环处的健康因子值,并构建训练集的HI曲线;将测试集输入训练好的堆叠去噪自编码器得到各循环处的健康因子值,并构建HI曲线;分别对训练集和测试集的HI曲线平滑处理,对平滑处理后的HI曲线进行评价。
-
公开(公告)号:CN109000930B
公开(公告)日:2020-06-16
申请号:CN201810565712.6
申请日:2018-06-04
Applicant: 哈尔滨工业大学
IPC: G01M15/14
Abstract: 一种基于堆叠去噪自编码器的涡轮发动机性能退化评估方法,它用于发动机性能退化评估技术领域。本发明解决了传统多传感器数据选择需要依赖复杂信息评价准则,HI构建时提取退化特征需依赖大量信号处理技术及专家经验,有监督训练方式标签选择需依赖人工参与,方法通用性不足的问题。本发明的4个去噪自编码机构建堆叠去噪自编码器来对输入数据进行单个节点值提取,训练集数据对网络进行预训练后利用BP算法微调参数,将提取的单个节点值作为各循环处的健康因子值,并构建训练集的HI曲线;将测试集输入训练好的堆叠去噪自编码器得到各循环处的健康因子值,并构建HI曲线;分别对训练集和测试集的HI曲线平滑处理,对平滑处理后的HI曲线进行评价。
-
-
-
-
-