-
公开(公告)号:CN106407989A
公开(公告)日:2017-02-15
申请号:CN201610805463.4
申请日:2016-09-07
Applicant: 厦门大学
CPC classification number: G06K9/6218 , G06K9/4671
Abstract: 基于快速自动密度聚类的可变尺度红外小目标的检测方法,涉及图像分析与图像理解。利用SURF算子解决尺度可变小目标的特征提取。解决特征对于环境的敏感问题;快速自动化密度聚类算法,针对问题域,直接从空域完成轨迹的分割、提取,克服了原有序列检测问题中数据融合带来的指数级复杂度问题。解决了聚类过程中产生的过分割以及欠分割问题,保证了轨迹提取的完整性和独立性以及聚类中心的自动选择。在后期的轨迹提取中,利用回溯算法寻找最优解,将轨迹具有的平滑不变约束融入剪枝函数的设计,快速剪掉无关的杂波分支,加快了搜索解的速度。结合鲁棒的特征检测算子和回溯策略,解决可变尺度红外小目标的检测问题,提高算法的实时性和鲁棒性。
-
公开(公告)号:CN106407989B
公开(公告)日:2019-05-28
申请号:CN201610805463.4
申请日:2016-09-07
Applicant: 厦门大学
Abstract: 基于快速自动密度聚类的可变尺度红外小目标的检测方法,涉及图像分析与图像理解。利用SURF算子解决尺度可变小目标的特征提取。解决特征对于环境的敏感问题;快速自动化密度聚类算法,针对问题域,直接从空域完成轨迹的分割、提取,克服了原有序列检测问题中数据融合带来的指数级复杂度问题。解决了聚类过程中产生的过分割以及欠分割问题,保证了轨迹提取的完整性和独立性以及聚类中心的自动选择。在后期的轨迹提取中,利用回溯算法寻找最优解,将轨迹具有的平滑不变约束融入剪枝函数的设计,快速剪掉无关的杂波分支,加快了搜索解的速度。结合鲁棒的特征检测算子和回溯策略,解决可变尺度红外小目标的检测问题,提高算法的实时性和鲁棒性。
-