-
公开(公告)号:CN114927239B
公开(公告)日:2024-07-02
申请号:CN202210422918.X
申请日:2022-04-21
Applicant: 厦门大学
IPC: G16H70/40 , G16H50/70 , G06F18/2415
Abstract: 本发明提供了机器学习技术领域的一种应用于药物分析的决策规则自动生成方法及系统,方法包括:步骤S10、获取药物数据,提取药物数据的药物特征并构建数据集;步骤S20、计算数据集中各药物特征的方差、数据复杂度以及排列重要性,基于方差、数据复杂度以及排列重要性筛选重要特征;步骤S30、从重要特征中筛选包含n(n=1,2,3,…)个特征的特征子集,并计算各特征子集的排列重要性;步骤S40、按排列重要性的顺序在各特征子集上搜索使预测结果发生翻转时,各特征子集所需的最小特征变化量,进而生成类别边界;步骤S50、通过贝叶斯公式将类别边界描述成决策规则。本发明的优点在于:能为任意机器学习模型(包括不可解释的黑盒模型)生成高度可解释的决策规则。
-
公开(公告)号:CN114927239A
公开(公告)日:2022-08-19
申请号:CN202210422918.X
申请日:2022-04-21
Applicant: 厦门大学
Abstract: 本发明提供了机器学习技术领域的一种应用于药物分析的决策规则自动生成方法及系统,方法包括:步骤S10、获取药物数据,提取药物数据的药物特征并构建数据集;步骤S20、计算数据集中各药物特征的方差、数据复杂度以及排列重要性,基于方差、数据复杂度以及排列重要性筛选重要特征;步骤S30、从重要特征中筛选包含n(n=1,2,3,…)个特征的特征子集,并计算各特征子集的排列重要性;步骤S40、按排列重要性的顺序在各特征子集上搜索使预测结果发生翻转时,各特征子集所需的最小特征变化量,进而生成类别边界;步骤S50、通过贝叶斯公式将类别边界描述成决策规则。本发明的优点在于:能为任意机器学习模型(包括不可解释的黑盒模型)生成高度可解释的决策规则。
-