-
公开(公告)号:CN109583357A
公开(公告)日:2019-04-05
申请号:CN201811413568.0
申请日:2018-11-23
Applicant: 厦门大学
Abstract: 本发明涉及一种改进LBP和轻量卷积神经网络级联的人脸识别方法,提供:对齐分区局部二值模式初次识别测试单元,APLBP与轻量化卷积神经网络级联的二次识别测试单元,APLBP识别测试单元,轻量化卷积神经网络并行流水线模块加速单元,计算平均识别率单元。将采集的人脸图像划分为主要区域和次要区域,对于人脸图像的主要区域与次要区域,提取中心点LBP像素特征值;通过级联的关系对APLBP识别并提取出的相似图像再加入轻量级卷积神经网络进行二次识别。充分融入了APLBP算法的速度优势和轻量化卷积神经网络的精度优势,通过对轻量化卷积神经网络的卷积层中耗时大的矩阵乘加运算使用并行模块进行加速,从而达到速度和准确率的双向提升。
-
公开(公告)号:CN109344614A
公开(公告)日:2019-02-15
申请号:CN201810810463.2
申请日:2018-07-23
Applicant: 厦门大学
IPC: G06F21/56
Abstract: 本发明提供一种Android恶意应用在线检测方法,在检测Android恶意软件的过程中,使用API函数字符串,提取8组特征信息,并映射为特征向量,而特征向量采用稀疏表示的形式;并且进一步分析API之间的不同关系并创建更高层次的关联分析;以图的方式来表示相关API作为结构化程序之间的关系;将API字符特征与关系图构成特征矩阵;采用多核学习方法训练出分类模型;部署在通用的Web架构中,实现Android应用软件的在线检测。本发明具有良好的分类效果,并且使用方便,快捷。
-
公开(公告)号:CN109583357B
公开(公告)日:2022-07-08
申请号:CN201811413568.0
申请日:2018-11-23
Applicant: 厦门大学
Abstract: 本发明涉及一种改进LBP和轻量卷积神经网络级联的人脸识别方法,提供:对齐分区局部二值模式初次识别测试单元,APLBP与轻量化卷积神经网络级联的二次识别测试单元,APLBP识别测试单元,轻量化卷积神经网络并行流水线模块加速单元,计算平均识别率单元。将采集的人脸图像划分为主要区域和次要区域,对于人脸图像的主要区域与次要区域,提取中心点LBP像素特征值;通过级联的关系对APLBP识别并提取出的相似图像再加入轻量级卷积神经网络进行二次识别。充分融入了APLBP算法的速度优势和轻量化卷积神经网络的精度优势,通过对轻量化卷积神经网络的卷积层中耗时大的矩阵乘加运算使用并行模块进行加速,从而达到速度和准确率的双向提升。
-
公开(公告)号:CN109344758B
公开(公告)日:2022-07-08
申请号:CN201811118268.X
申请日:2018-09-25
Applicant: 厦门大学
IPC: G06V40/16 , G06V10/764 , G06K9/62
Abstract: 本发明涉及一种基于改进局部二值模式的人脸识别方法,拍摄人脸图片,采用人脸检测算法进行人脸检测,并进行裁剪;对得到的人脸图像,获取特征点的坐标,根据坐标对人脸图像进行处理,得到人脸的正脸图片,并分成训练集和测试集;采用基于4进制的近邻LBP算法计算对应参数;采用基于4进制的近邻LBP算法计算测试集与训练集中图片的特征值,在测试集中任意选取一张图片,并计算其特征向量与训练集中所有图片特征向量的欧氏距离,选取欧氏距离最小的训练样本作为此待测样本的识别结果,并与其标签进行比较,计算识别率,输出识别结果。本发明提出的方法能更好地反映图形的纹理特征,提高人脸识别的准确率。
-
公开(公告)号:CN109344758A
公开(公告)日:2019-02-15
申请号:CN201811118268.X
申请日:2018-09-25
Applicant: 厦门大学
Abstract: 本发明涉及一种基于改进局部二值模式的人脸识别方法,拍摄人脸图片,采用人脸检测算法进行人脸检测,并进行裁剪;对得到的人脸图像,获取特征点的坐标,根据坐标对人脸图像进行处理,得到人脸的正脸图片,并分成训练集和测试集;采用基于4进制的近邻LBP算法计算对应参数;采用基于4进制的近邻LBP算法计算测试集与训练集中图片的特征值,在测试集中任意选取一张图片,并计算其特征向量与训练集中所有图片特征向量的欧氏距离,选取欧氏距离最小的训练样本作为此待测样本的识别结果,并与其标签进行比较,计算识别率,输出识别结果。本发明提出的方法能更好地反映图形的纹理特征,提高人脸识别的准确率。
-
公开(公告)号:CN109344614B
公开(公告)日:2021-04-20
申请号:CN201810810463.2
申请日:2018-07-23
Applicant: 厦门大学
IPC: G06F21/56
Abstract: 本发明提供一种Android恶意应用在线检测方法,在检测Android恶意软件的过程中,使用API函数字符串,提取8组特征信息,并映射为特征向量,而特征向量采用稀疏表示的形式;并且进一步分析API之间的不同关系并创建更高层次的关联分析;以图的方式来表示相关API作为结构化程序之间的关系;将API字符特征与关系图构成特征矩阵;采用多核学习方法训练出分类模型;部署在通用的Web架构中,实现Android应用软件的在线检测。本发明具有良好的分类效果,并且使用方便,快捷。
-
-
-
-
-