基于QRA-LSTM的日前光伏功率非参数概率预测方法

    公开(公告)号:CN111612244B

    公开(公告)日:2022-08-05

    申请号:CN202010418956.9

    申请日:2020-05-18

    摘要: 本发明公开了基于QRA‑LSTM的日前光伏功率非参数概率预测方法,采用光伏历史数据和数值天气预报数据(NSW)训练了一组相互独立的长短期记忆网络(LSTM)确定性预测模型,并通过分位数回归平均算法(QRA)集成各独立LSTM预测模型生成了光伏出力的非参数概率预测模型。非参数概率预测能够描述单纯的确定性预测难以反映的不确定性问题,其结果具有更高的可信度。本发明能够有效避免确定性预测和概率预测分别孤立看待等问题,为调度人员的决策调度提供重要依据,应用价值和前景巨大。

    一种含P2G微网的储电储气容量配置与调度优化方法

    公开(公告)号:CN111987729A

    公开(公告)日:2020-11-24

    申请号:CN202010794809.1

    申请日:2020-08-10

    摘要: 本发明公开了一种含P2G微网的储电储气容量配置与调度优化方法,根据含P2G单元的微网运行模型构建储电储气配置模型和调度模型,储电储气配置模型采用粒子群优化算法对储电装置和储气装置的额定容量进行配置,调度模型采用差分进化算法以微网每日运行成本最低为目标函数对储电装置的充放电功率,储气装置的充放气功率,售电功率,购电功率,负荷转移功率和P2G设备的输入功率进行调整,并将目标函数值作为适应值返回给储电储气配置模型,再根据适应值对储电储气装置进行优化配置。本发明适用于含有P2G的微网运行多场景下的储电储气配置策略和微网优化调度,在降低不合理的储电储气配置成本的同时提高了能源的利用效率。

    基于PSR-DBN的超短期母线负荷预测方法

    公开(公告)号:CN111080000A

    公开(公告)日:2020-04-28

    申请号:CN201911239921.2

    申请日:2019-12-06

    摘要: 本发明公开了一种基于PSR-DBN的超短期母线负荷预测方法,包括步骤:(1)采集母线负荷历史数据,对负荷时间序列进行极差归一化处理;(2)对负荷时间序列进行相空间重构,并采用C-C方法求解负荷时间序列的最优嵌入维数和最优延时;(3)构建深度信念网络,采用重构的负荷时间序列相空间矩阵作为训练集对深度信念网络进行训练,并采用交叉验证优化深度信念网络的超参数;(4)利用训练完成的深度信念网络预测未来时刻的负荷值;(5)利用负荷时间序列的最大最小值对深度信念网络返回的负荷预测值进行反归一化处理,得到实际的负荷预测值。本发明预测方法在分布式电源渗透率较高且母线负荷波动较大的情况下依旧能保持相对较高的预测精度。

    一种含P2G微网的储电储气容量配置与调度优化方法

    公开(公告)号:CN111987729B

    公开(公告)日:2021-10-22

    申请号:CN202010794809.1

    申请日:2020-08-10

    摘要: 本发明公开了一种含P2G微网的储电储气容量配置与调度优化方法,根据含P2G单元的微网运行模型构建储电储气配置模型和调度模型,储电储气配置模型采用粒子群优化算法对储电装置和储气装置的额定容量进行配置,调度模型采用差分进化算法以微网每日运行成本最低为目标函数对储电装置的充放电功率,储气装置的充放气功率,售电功率,购电功率,负荷转移功率和P2G设备的输入功率进行调整,并将目标函数值作为适应值返回给储电储气配置模型,再根据适应值对储电储气装置进行优化配置。本发明适用于含有P2G的微网运行多场景下的储电储气配置策略和微网优化调度,在降低不合理的储电储气配置成本的同时提高了能源的利用效率。

    基于QRA-LSTM的日前光伏功率非参数概率预测方法

    公开(公告)号:CN111612244A

    公开(公告)日:2020-09-01

    申请号:CN202010418956.9

    申请日:2020-05-18

    摘要: 本发明公开了基于QRA-LSTM的日前光伏功率非参数概率预测方法,采用光伏历史数据和数值天气预报数据(NSW)训练了一组相互独立的长短期记忆网络(LSTM)确定性预测模型,并通过分位数回归平均算法(QRA)集成各独立LSTM预测模型生成了光伏出力的非参数概率预测模型。非参数概率预测能够描述单纯的确定性预测难以反映的不确定性问题,其结果具有更高的可信度。本发明能够有效避免确定性预测和概率预测分别孤立看待等问题,为调度人员的决策调度提供重要依据,应用价值和前景巨大。

    一种基于double-input CNN-LSTM的系统负荷预测方法及系统

    公开(公告)号:CN117200222A

    公开(公告)日:2023-12-08

    申请号:CN202311302517.1

    申请日:2023-10-09

    摘要: 本发明公开了一种基于double‑input CNN‑LSTM的系统负荷预测方法及系统,该方法包括:获取数值天气预报和实测历史负荷数据,对数据中存在的异常值、缺失值异常点清洗和填充;对清洗后的负荷和天气数据构造成时序特征集,进而划分特征集为训练集、验证集和测试集,输入double‑input CNN‑LSTM时序网络进行训练得到模型;利用训练好的double‑input CNN‑LSTM时序预测模型对电力系统进行系统负荷预测。本发明综合考虑历史负荷的周期性、趋势性变化和预测日的气象影响,模型将特征输入划分为历史特征和预测特征,解决历史特征和预测日特征尺度不对称的问题,提高了系统负荷预测精度和曲线形态准确性,系统负荷预测结果满足电网负荷预测计划要求,能够更好地应用于之后的负荷调度决策中。