一种基于网络特征融合的文本分类方法

    公开(公告)号:CN112836056A

    公开(公告)日:2021-05-25

    申请号:CN202110266934.X

    申请日:2021-03-12

    IPC分类号: G06F16/35 G06N3/04

    摘要: 本发明公开了一种基于网络特征融合的文本分类方法,针对传统卷积神经网络无法关注文本上下文含义以及传统循环神经网络存在的短时记忆和梯度消失问题,提出了基于Res2Net和BiLSTM网络融合的模型,能够有效地解决上述网络存在的问题,更好地对文本进行分类。本发明利用多尺度残差网络Res2Net对文本的局部特征进行提取,同时结合双向长短时记忆网络BiLSTM对文本上下文特征进行提取,同时在BiLSTM网络层后加上传统机器学习方法——条件随机场CRF来预测标签与标签之间的关系,达到文本正确分类的效果。本发明在不过多增加网络参数的情况下,通过融合能够有效地提升文本分类的准确率。

    一种基于网络特征融合的文本分类方法

    公开(公告)号:CN112836056B

    公开(公告)日:2023-04-18

    申请号:CN202110266934.X

    申请日:2021-03-12

    摘要: 本发明公开了一种基于网络特征融合的文本分类方法,针对传统卷积神经网络无法关注文本上下文含义以及传统循环神经网络存在的短时记忆和梯度消失问题,提出了基于Res2Net和BiLSTM网络融合的模型,能够有效地解决上述网络存在的问题,更好地对文本进行分类。本发明利用多尺度残差网络Res2Net对文本的局部特征进行提取,同时结合双向长短时记忆网络BiLSTM对文本上下文特征进行提取,同时在BiLSTM网络层后加上传统机器学习方法——条件随机场CRF来预测标签与标签之间的关系,达到文本正确分类的效果。本发明在不过多增加网络参数的情况下,通过融合能够有效地提升文本分类的准确率。