基于联合概率矩阵的试卷图像自动核分方法

    公开(公告)号:CN110163256B

    公开(公告)日:2022-11-15

    申请号:CN201910327743.2

    申请日:2019-04-23

    Abstract: 本发明揭示了一种基于联合概率矩阵的试卷图像自动核分方法,包括如下步骤:S1、利用训练手写数据集训练得到分数识别模型;S2、使用直线检测算法对待检测的试卷分数所在的矩形区域进行切割;S3、将S2中的结果作为所述分数识别模型的输入,识别并输出可能性最高的N个值;S4、构建联合概率矩阵并创建分数搜索树,计算置信值;S5、对计算结果进行判断、并将计算结果与预设阈值进行比较,最终输出分数计算结果。本发明通过OCR的技术结合TensFlow及CNN卷积网络的方法,利用联合概率矩阵计算识别置信度,实现了对于试卷总分的自动核对统计。本发明不仅有效地提高了核分操作的效率,同时也充分地保证了核分结果的准确性。

    基于联合概率矩阵的试卷图像自动核分方法

    公开(公告)号:CN110163256A

    公开(公告)日:2019-08-23

    申请号:CN201910327743.2

    申请日:2019-04-23

    Abstract: 本发明揭示了一种基于联合概率矩阵的试卷图像自动核分方法,包括如下步骤:S1、利用训练手写数据集训练得到分数识别模型;S2、使用直线检测算法对待检测的试卷分数所在的矩形区域进行切割;S3、将S2中的结果作为所述分数识别模型的输入,识别并输出可能性最高的N个值;S4、构建联合概率矩阵并创建分数搜索树,计算置信值;S5、对计算结果进行判断、并将计算结果与预设阈值进行比较,最终输出分数计算结果。本发明通过OCR的技术结合TensFlow及CNN卷积网络的方法,利用联合概率矩阵计算识别置信度,实现了对于试卷总分的自动核对统计。本发明不仅有效地提高了核分操作的效率,同时也充分地保证了核分结果的准确性。

    基于事件主题分析的虚假信息识别系统及识别方法

    公开(公告)号:CN110134762A

    公开(公告)日:2019-08-16

    申请号:CN201910327493.2

    申请日:2019-04-23

    Abstract: 本发明揭示了一种基于事件主题分析的虚假信息识别系统及识别方法。系统包括真实事件文本采集模块、事件树构建模块、分支主题粘合度计算模块、待测文本读取模块、相关度检测模块以及分支粘合度对比模块。方法包括真实事件文本采集步骤、事件树构建步骤、分支主题粘合度计算步骤、待测文本读取步骤、相关度检测步骤以及分支粘合度对比步骤。本发明能够为用户在网络环境中区分虚假信息提供帮助、从而使其能够更加快速有效地获取到真实可靠的信息。本发明不仅有效地提高了虚假信息识别的效率、节约了使用者的时间,同时也充分地保证了信息识别过程的标准化、提高了识别结果的准确性。

Patent Agency Ranking