-
公开(公告)号:CN108574653A
公开(公告)日:2018-09-25
申请号:CN201810351404.3
申请日:2018-04-19
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
Abstract: 本发明公开了基于双Sigmoid迟滞噪声混沌神经网络的信号盲检测方法,其特征在于,包括如下步骤:步骤SS1:构造接收数据矩阵XN;步骤SS2:对所述接收数据矩阵XN进行奇异值分解;步骤SS3:设置权矩阵W;步骤SS4:选择双Sigmoid迟滞混沌神经网络的激活函数,进行双Sigmoid迟滞混沌神经网络迭代运算,然后把每次迭代的结果代入双Sigmoid迟滞噪声混沌神经网络的能量函数E(t)中,当所述能量函数E(t)达到最小值,则所述双Sigmoid迟滞噪声混沌神经网络达到平衡,迭代结束。本发明首次利用双Sigmoid混沌神经网络和迟滞噪声构成了一个双Sigmoid迟滞噪声混沌神经网络,增强了网络的优化性能,提高了网络优化解的质量,本发明的抗噪性能和收敛速度优于传统的Hopfield信号盲检测算法。
-
公开(公告)号:CN108574653B
公开(公告)日:2021-06-11
申请号:CN201810351404.3
申请日:2018-04-19
Applicant: 南京邮电大学 , 南京邮电大学南通研究院有限公司
Abstract: 本发明公开了基于双Sigmoid迟滞噪声混沌神经网络的信号盲检测方法,其特征在于,包括如下步骤:步骤SS1:构造接收数据矩阵XN;步骤SS2:对所述接收数据矩阵XN进行奇异值分解;步骤SS3:设置权矩阵W;步骤SS4:选择双Sigmoid迟滞混沌神经网络的激活函数,进行双Sigmoid迟滞混沌神经网络迭代运算,然后把每次迭代的结果代入双Sigmoid迟滞噪声混沌神经网络的能量函数E(t)中,当所述能量函数E(t)达到最小值,则所述双Sigmoid迟滞噪声混沌神经网络达到平衡,迭代结束。本发明首次利用双Sigmoid混沌神经网络和迟滞噪声构成了一个双Sigmoid迟滞噪声混沌神经网络,增强了网络的优化性能,提高了网络优化解的质量,本发明的抗噪性能和收敛速度优于传统的Hopfield信号盲检测算法。
-
公开(公告)号:CN106953820A
公开(公告)日:2017-07-14
申请号:CN201710224545.4
申请日:2017-04-07
Applicant: 南京邮电大学
CPC classification number: H04L25/03165 , H04L1/0038 , H04L25/03923 , H04L2025/03464
Abstract: 本发明提供了基于双Sigmoid复数连续神经网络的信号盲检测方法,所述方法设计了新的激活函数以减弱在0点周围对网络输入值的敏感度;利用新激活函数,在不影响收敛时间的前提下,误码率下降,改善了抗噪声能力;为了提高系统收敛速度,在复数连续Hopfield型神经网络的基础上引入双Sigmoid结构,构建本发明双Sigmoid复数连续Hopfield型神经网,在相同的信噪比条件下,以状态向量和平衡点之间的距离范数为指标,本发明双Sigmoid复数连续Hopfield型神经网络算法比传统双Sigmoid神经网络收敛速率更快,优化了HNN神经网络性能。
-
-