基于特征二维信息增益加权的朴素贝叶斯文本分类方法

    公开(公告)号:CN108460080B

    公开(公告)日:2020-12-08

    申请号:CN201810019705.6

    申请日:2018-01-09

    Abstract: 本发明提供基于特征二维信息增益加权的朴素贝叶斯文本分类方法。所述方法获取文档的特征词,根据不同的特征词出现的类别数和文档数,得到相应的特征类别概率和特征文档概率,进而得到特征的二维信息增益;由于信息增益具有反应特征对分类效果提升大小的作用,信息增益越大说明该特征越能表达该类的信息,把特征的二维信息相结合,提高了朴素贝叶斯文本分类器的性能;并且与TFIDF加权朴素贝叶斯文本分类算法、TFIDF*IGC文本分类算法相比,基于特征二维信息增益加权的朴素贝叶斯文本分类方法具有更好的鲁棒性,使其对所有类别的分类效果都能保持很好;在同等条件下,本发明的分类性能要优于传统改进的朴素贝叶斯文本分类方法。

    一种基于循环神经网络的激活函数参数化改进方法

    公开(公告)号:CN109857867A

    公开(公告)日:2019-06-07

    申请号:CN201910056795.0

    申请日:2019-01-22

    Abstract: 本发明公开了一种基于循环神经网络的激活函数参数化改进方法,包括步骤:步骤一,以长短期记忆网络为基础,构建双向长短期记忆网络Bi-LSTM;步骤二,将Bi-LSTM网络中各个隐藏层串联,在网络中最后一层隐藏层之后加入平均池化层,在平均池化层之后连接一个归一指数化函数层,建立密集连接的双向长短期记忆网络DC-Bi-LSTM;步骤三,运用参数化Sigmoid激活函数,在数据集上进行训练,记录密集连接的双向长短期记忆网络对句子分类的精确度,得到最佳精确度对应的参数化激活函数。本发明通过参数化激活函数模块,使得S型激活函数的非饱和区域得到扩展,同时避免函数的导数过小,防止梯度消失现象的发生。

    一种混合傅里叶核函数支持向量机文本分类方法

    公开(公告)号:CN108536730A

    公开(公告)日:2018-09-14

    申请号:CN201810160983.3

    申请日:2018-02-27

    Abstract: 本发明提出了一种混合傅里叶核函数支持向量机文本分类方法。所述方法根据支持向量机中各种核函数不同的学习、泛化能力,进而通过线性加权混合多项式与傅里叶核函数,组成新的混合傅里叶核函数;由于核函数的学习能力以及泛化能力很大程度上影响支持向量机分类效果,因此把多项式核函数与傅里叶核函数相结合。本发明方法继承了傅里叶核函数的高学习能力与多项式核函数的泛化能力,提高了支持向量机分类器的性能;并且与单核中的多项式核函数、高斯核函数、傅里叶核函数以及混合核函数中的多项式与高斯核组合核函数比较,混合傅里叶核函数具有更好的泛化、学习能力,文本分类效果最佳。

    基于改进深度特征加权的朴素贝叶斯文本分类方法

    公开(公告)号:CN108647259B

    公开(公告)日:2022-06-10

    申请号:CN201810382423.2

    申请日:2018-04-26

    Abstract: 本发明公开了一种基于改进深度特征加权的朴素贝叶斯文本分类方法,包括:获取文本的特征词,根据不同的特征词出现的类别数和文本数,得到相应的特征类别概率和特征文本概率,进而得到特征的二维信息增益;利用所述二维信息增益与深度加权方式相结合对特征加权朴素贝叶斯模型进行深度加权,得到改进深度特征加权的朴素贝叶斯模型;对于任意文本,利用改进深度特征加权的朴素贝叶斯模型分别计算属于各特征类别的概率,选出最大的概率值对应的类别即文本所属类别。本发明能够使传统朴素贝叶斯算法的特征独立性假设得到抑制,为文本分类任务提供准确和快速的分类方法。

    一种混合傅里叶核函数支持向量机文本分类方法

    公开(公告)号:CN108536730B

    公开(公告)日:2020-04-07

    申请号:CN201810160983.3

    申请日:2018-02-27

    Abstract: 本发明提出了一种混合傅里叶核函数支持向量机文本分类方法。所述方法根据支持向量机中各种核函数不同的学习、泛化能力,进而通过线性加权混合多项式与傅里叶核函数,组成新的混合傅里叶核函数;由于核函数的学习能力以及泛化能力很大程度上影响支持向量机分类效果,因此把多项式核函数与傅里叶核函数相结合。本发明方法继承了傅里叶核函数的高学习能力与多项式核函数的泛化能力,提高了支持向量机分类器的性能;并且与单核中的多项式核函数、高斯核函数、傅里叶核函数以及混合核函数中的多项式与高斯核组合核函数比较,混合傅里叶核函数具有更好的泛化、学习能力,文本分类效果最佳。

    基于信息增益与最大相关最小冗余二阶段特征选择方法

    公开(公告)号:CN108763344B

    公开(公告)日:2021-12-14

    申请号:CN201810458856.1

    申请日:2018-05-15

    Abstract: 本发明公开了一种基于信息增益与最大相关最小冗余二阶段特征选择方法,首先根据信息增益算法初步选取特征词,得到特征词子集;计算特征词与类别之间的互信息值;计算特征词之间的互信息值;计算特征词的类差分度;计算特征词的类差分度差值;将类差分度差值引入最大相关最小冗余MRMR算法进行二阶段特征词选取;本发明通过信息增益选取一阶段特征集合,同时将类差分度思想引入最大相关最小冗余方法作为二阶段特征提取方法,进而提升特征集合选取的准确度,实现特征词的准确选取,解决现有特征提取分类效果差、计算量大以及特征冗余等技术问题。

Patent Agency Ranking