-
公开(公告)号:CN110188656B
公开(公告)日:2023-03-24
申请号:CN201910445298.X
申请日:2019-05-27
Applicant: 南京邮电大学
IPC: G06V40/16 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了一种多角度人脸表情图像的生成与识别,将人脸局部关键特征与全局关键特征融合,并将对抗生成一致性网络CTGAN和卷积神经网络融合,形成了判别侧脸表情类别的深度神经网络,将四通道的侧脸图片送到生成器进行训练,而不是传统中将随机变量作为输入,从而最大化的保存了侧脸图片的特征信息,可以更有效的建立从侧脸到正脸图片的映射关系,提升整体识别准确率;将多种特征融合并使用卷积神经网络CNN对提取到的特征进行分类,能够极大的提升多角度人脸表情识别的准确率和鲁棒性。
-
公开(公告)号:CN110188656A
公开(公告)日:2019-08-30
申请号:CN201910445298.X
申请日:2019-05-27
Applicant: 南京邮电大学
Abstract: 本发明公开了一种多角度人脸表情图像的生成与识别,将人脸局部关键特征与全局关键特征融合,并将对抗生成一致性网络CTGAN和卷积神经网络融合,形成了判别侧脸表情类别的深度神经网络,将四通道的侧脸图片送到生成器进行训练,而不是传统中将随机变量作为输入,从而最大化的保存了侧脸图片的特征信息,可以更有效的建立从侧脸到正脸图片的映射关系,提升整体识别准确率;将多种特征融合并使用卷积神经网络CNN对提取到的特征进行分类,能够极大的提升多角度人脸表情识别的准确率和鲁棒性。
-