一种基于retinex算法和卷积神经网络的行人再识别方法

    公开(公告)号:CN106897673B

    公开(公告)日:2020-02-21

    申请号:CN201710044905.2

    申请日:2017-01-20

    Abstract: 本发明公开了一种基于retinex算法和卷积神经网络的行人再识别方法,首先提取视频数据库中的视频帧序列,构建卷积神经网络并训练出行人网络模型,利用训练好的网络模型将行人从视频帧序列中检测出来,用retinex算法将检测出的行人进行图像增强,最后将增强后的行人输入卷积神经网络中提取行人不同层次的深度特征,通过卷积神经网络最后一层的softmax分类器进行分类,得到最终匹配相似度。本发明充分考虑了现实场景中光照变化,阴影覆盖等问题,在识别之前引入retinex增强算法,模仿人类视觉系统,使图像更接近于人眼所看到的样子,有效地提高了识别效果。采用端到端的行人再识别方法,用同一个卷积神经网络将行人检测与行人识别结合在一起,解决了行人标签的对齐问题。

    一种基于高阶图跨时域关联的多目标跟踪方法

    公开(公告)号:CN106875417B

    公开(公告)日:2019-10-08

    申请号:CN201710015550.4

    申请日:2017-01-10

    Abstract: 本发明公开了一种基于高阶图跨时域关联的多目标跟踪方法,首先根据多目标检测方法得到视频中各帧的检测结果;然后由这些检测响应和构建高阶边的限制函数F(vi,vj)来构建一个跨时域的普通高阶图;之后为了快速提取普通高阶图中包含的各个时域下的局部轨迹段集合,使用RANSAC‑style的优化方法将普通高阶图先转化成随机一致性高阶图,再进一步转化成普通的二阶图,最后对普通二阶图进行子图搜索,再将各个子图中多个轨迹段按照时域的先后顺序连接起来,形成目标长轨迹,从而使复杂场景中的多目标跟踪具有很好的鲁棒性。本发明充分利用复杂场景中多目标的运动信息和表象信息进行跨时域关联,解决了邻近目标表观相似时出现身份交换或者局部关联错误造成的跟踪失败问题。

    一种基于retinex算法和卷积神经网络的行人再识别方法

    公开(公告)号:CN106897673A

    公开(公告)日:2017-06-27

    申请号:CN201710044905.2

    申请日:2017-01-20

    Abstract: 本发明公开了一种基于retinex算法和卷积神经网络的行人再识别方法,首先提取视频数据库中的视频帧序列,构建卷积神经网络并训练出行人网络模型,利用训练好的网络模型将行人从视频帧序列中检测出来,用retinex算法将检测出的行人进行图像增强,最后将增强后的行人输入卷积神经网络中提取行人不同层次的深度特征,通过卷积神经网络最后一层的softmax分类器进行分类,得到最终匹配相似度。本发明充分考虑了现实场景中光照变化,阴影覆盖等问题,在识别之前引入retinex增强算法,模仿人类视觉系统,使图像更接近于人眼所看到的样子,有效地提高了识别效果。采用端到端的行人再识别方法,用同一个卷积神经网络将行人检测与行人识别结合在一起,解决了行人标签的对齐问题。

    一种基于高阶图跨时域关联的多目标跟踪方法

    公开(公告)号:CN106875417A

    公开(公告)日:2017-06-20

    申请号:CN201710015550.4

    申请日:2017-01-10

    Abstract: 本发明公开了一种基于高阶图跨时域关联的多目标跟踪方法,首先根据多目标检测方法得到视频中各帧的检测结果;然后由这些检测响应和构建高阶边的限制函数F(vi,vj)来构建一个跨时域的普通高阶图;之后为了快速提取普通高阶图中包含的各个时域下的局部轨迹段集合,使用RANSAC‑style的优化方法将普通高阶图先转化成随机一致性高阶图,再进一步转化成普通的二阶图,最后对普通二阶图进行子图搜索,再将各个子图中多个轨迹段按照时域的先后顺序连接起来,形成目标长轨迹,从而使复杂场景中的多目标跟踪具有很好的鲁棒性。本发明充分利用复杂场景中多目标的运动信息和表象信息进行跨时域关联,解决了邻近目标表观相似时出现身份交换或者局部关联错误造成的跟踪失败问题。

Patent Agency Ranking