-
公开(公告)号:CN117349684B
公开(公告)日:2024-02-06
申请号:CN202311643300.7
申请日:2023-12-04
Applicant: 南京邮电大学
Abstract: 本发明属于生理信号处理和统计学领域,公开了一种基于向量排列最大距离的睡眠脑电分析方法,包括:步骤1、首先对睡眠脑电信号进行多维向量重构,得到重构向量序列;步骤2、计算重构向量序列中的任意向量之间的距离;步骤3、将睡眠脑电的重构向量转化为幅度排列类型,生成对应的排列序列;步骤4、基于最大距离和步的排列类型的向量相似性判定;步骤5、根据统计睡眠脑电相同向量的数量,然后实现睡眠脑电概率分布的估计;步骤6、睡眠脑电的动态熵值复杂度dynEn计算。本发明可以实现睡眠脑电更加准确的概率估计以及相关统计参数的计算。
-
公开(公告)号:CN108491858A
公开(公告)日:2018-09-04
申请号:CN201810141576.8
申请日:2018-02-11
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于卷积神经网络的疲劳驾驶检测方法及系统,属于图像处理与模式识别技术领域。首先,采集驾驶员在驾驶状态下的二维面部图像,并按疲劳程度逐级分类,建立疲劳驾驶图像库;其次,构建一个含有数据层、卷积层、池化层、连接层和分类层的卷积神经网络;然后,以疲劳驾驶图像库中图像数据和标签作为卷积神经网络的输入,利用反向传播算法对构建的网络迭代训练,使网络输出损失函数值逐步下降并收敛;最后,输入驾驶员驾驶状态下面部图像测试样本,利用训练后的卷积神经网络模型对其识别,实现驾驶员面部图像疲劳程度的检测分类。本发明相比于传统机器学习方法,明显提高了识别分类效果,为疲劳驾驶实时监测提供一种可行思路。
-
公开(公告)号:CN117349684A
公开(公告)日:2024-01-05
申请号:CN202311643300.7
申请日:2023-12-04
Applicant: 南京邮电大学
Abstract: 本发明属于生理信号处理和统计学领域,公开了一种基于向量排列最大距离的睡眠脑电分析方法,包括:步骤1、首先对睡眠脑电信号进行多维向量重构,得到重构向量序列;步骤2、计算重构向量序列中的任意向量之间的距离;步骤3、将睡眠脑电的重构向量转化为幅度排列类型,生成对应的排列序列;步骤4、基于最大距离和步的排列类型的向量相似性判定;步骤5、根据统计睡眠脑电相同向量的数量,然后实现睡眠脑电概率分布的估计;步骤6、睡眠脑电的动态熵值复杂度dynEn计算。本发明可以实现睡眠脑电更加准确的概率估计以及相关统计参数的计算。
-
公开(公告)号:CN106778657A
公开(公告)日:2017-05-31
申请号:CN201611233381.3
申请日:2016-12-28
Applicant: 南京邮电大学
CPC classification number: G06K9/00302 , G06K9/6277 , G06N3/08
Abstract: 本发明公开了基于卷积神经网络的新生儿疼痛表情分类方法,该方法首先采集新生儿疼痛表情图像,由专业医护人员对图像按平静、哭、轻微疼痛、剧烈疼痛逐级分类,建立新生儿疼痛表情图像库;其次,构建含有1层数据层、3层卷积层、2层全连接层和1层分类层的卷积神经网络;然后,以新生儿疼痛表情图像库中样本作为卷积神经网络的数据输入,利用反向传播算法对网络迭代训练,并优化训练全局参数使网络输出损失函数值下降并收敛;最后,输入新生儿疼痛表情测试样本,利用卷积神经网络对其识别分类,实现新生儿在平静、哭、轻微疼痛、剧烈疼痛状态的表情识别,为评估新生儿疼痛程度提供一种新的方法途径。
-
-
-