一种基于环形区域最大频繁视觉单词的图像分类方法

    公开(公告)号:CN104778475A

    公开(公告)日:2015-07-15

    申请号:CN201510145940.4

    申请日:2015-03-30

    Inventor: 朱书眉 王诚

    Abstract: 本发明公开了一种基于环形区域最大频繁视觉单词的图像分类方法,主要解决现有分类模型不能充分表达图像所属类别共有特征以及分类精确度较低的问题。该方法实现步骤是:(1)建立自然场景图像的训练集和测试集;(2)对训练集图像提取SIFT特征点并优化;(3)利用均值聚类方法聚类优化后的特征点集得到视觉词典;(4)基于环形区域提取视觉单词最大频繁项集;(5)生成加权视觉单词直方图;(6)训练支持向量机实现自然场景图像的分类。本发明相较其他利用视觉词袋特征进行图像分类的方法,能够提高同类别图像视觉词袋的相似程度,而使不同类别的差异更显著,在一定程度上提高分类的精确度,具有较强的实用价值。

    一种基于环形区域最大频繁视觉单词的图像分类方法

    公开(公告)号:CN104778475B

    公开(公告)日:2018-01-19

    申请号:CN201510145940.4

    申请日:2015-03-30

    Inventor: 朱书眉 王诚

    Abstract: 本发明公开了一种基于环形区域最大频繁视觉单词的图像分类方法,主要解决现有分类模型不能充分表达图像所属类别共有特征以及分类精确度较低的问题。该方法实现步骤是:(1)建立自然场景图像的训练集和测试集;(2)对训练集图像提取SIFT特征点并优化;(3)利用均值聚类方法聚类优化后的特征点集得到视觉词典;(4)基于环形区域提取视觉单词最大频繁项集;(5)生成加权视觉单词直方图;(6)训练支持向量机实现自然场景图像的分类。本发明相较其他利用视觉词袋特征进行图像分类的方法,能够提高同类别图像视觉词袋的相似程度,而使不同类别的差异更显著,在一定程度上提高分类的精确度,具有较强的实用价值。

Patent Agency Ranking