-
公开(公告)号:CN109919814A
公开(公告)日:2019-06-21
申请号:CN201910179821.9
申请日:2019-03-11
Applicant: 南京邮电大学
Abstract: 本发明提出了一种基于GIS和人脸识别技术的课堂点名方法,包括以下步骤:学生和教师在终端服务器中进行注册;教师打开教师客户端进行点名,学生打开学生客户端,终端服务器校验学生客户端定位是否位于GIS模块所规定的上课区域;认证成功后,进行脸部验证;验证成功后,终端服务器实时汇总校验成功的学生信息,并通过身份认证信息形成最终出勤表。该方法易于实现,且简单高效,解决了课堂带签、代课等问题。
-
公开(公告)号:CN109919981B
公开(公告)日:2022-08-02
申请号:CN201910179594.X
申请日:2019-03-11
Applicant: 南京邮电大学
Abstract: 一种基于卡尔曼滤波辅助的多特征融合的多目标跟踪方法,首先读取视频帧中的任意两帧图像,将预处理过的图像输入到多目标检测器中,得到视频中各帧的检测结果。引入了目标遮挡机制,该判断机制根据目标中心点的坐标和目标的大小来判断,若被遮挡部分较小或无遮挡时,检测器将检测框的质心坐标和预处理视频帧输入到预训练的卷积神经网络中,提取目标的浅层和深层的语义信息,并级联起来构成特征矩阵,再将两帧的特征矩阵进行相似性估计,得到最优轨迹。如果检测到的目标遮挡情况严重,则将检测框的质心坐标输入到卡尔曼滤波器中,根据目标之前的运动状态来估计该目标在下一帧中的位置信息,用估计的坐标信息和实际检测结果相比对,得出最佳的轨迹。
-
公开(公告)号:CN109872346B
公开(公告)日:2022-08-19
申请号:CN201910179822.3
申请日:2019-03-11
Applicant: 南京邮电大学
IPC: G06T7/246
Abstract: 一种支持循环神经网络对抗学习的目标跟踪方法,包括以下步骤:步骤1,构建目标跟踪生成对抗网络OTGAN模型;步骤2,预训练生成器,使其具有初步预测视频帧跟踪结果的能力;步骤3,预训练判别器,使其具有初步判别视频中运动目标运动轨迹真假的能力;步骤4,对抗训练目标跟踪生成对抗网络OTGAN。本发明将生成对抗网络和长短期记忆网络LSTM融合,形成了基于对抗训练的目标跟踪循环神经网络,将视频帧全局特征向量作为生成对抗网络的输入之一,而不是传统中将随机变量作为输入,从而学习到视频帧中目标信息,并学习从历史及当前视频帧信息到目标位置的映射关系,提升整体跟踪准确率;同时利用目标运动轨迹进行监督训练,能够极大地提升目标跟踪的准确率。
-
公开(公告)号:CN109919981A
公开(公告)日:2019-06-21
申请号:CN201910179594.X
申请日:2019-03-11
Applicant: 南京邮电大学
Abstract: 一种基于卡尔曼滤波辅助的多特征融合的多目标跟踪方法,首先读取视频帧中的任意两帧图像,将预处理过的图像输入到多目标检测器中,得到视频中各帧的检测结果。引入了目标遮挡机制,该判断机制根据目标中心点的坐标和目标的大小来判断,若被遮挡部分较小或无遮挡时,检测器将检测框的质心坐标和预处理视频帧输入到预训练的卷积神经网络中,提取目标的浅层和深层的语义信息,并级联起来构成特征矩阵,再将两帧的特征矩阵进行相似性估计,得到最优轨迹。如果检测到的目标遮挡情况严重,则将检测框的质心坐标输入到卡尔曼滤波器中,根据目标之前的运动状态来估计该目标在下一帧中的位置信息,用估计的坐标信息和实际检测结果相比对,得出最佳的轨迹。
-
公开(公告)号:CN109872346A
公开(公告)日:2019-06-11
申请号:CN201910179822.3
申请日:2019-03-11
Applicant: 南京邮电大学
IPC: G06T7/246
Abstract: 一种支持循环神经网络对抗学习的目标跟踪方法,包括以下步骤:步骤1,构建目标跟踪生成对抗网络OTGAN模型;步骤2,预训练生成器,使其具有初步预测视频帧跟踪结果的能力;步骤3,预训练判别器,使其具有初步判别视频中运动目标运动轨迹真假的能力;步骤4,对抗训练目标跟踪生成对抗网络OTGAN。本发明将生成对抗网络和长短期记忆网络LSTM融合,形成了基于对抗训练的目标跟踪循环神经网络,将视频帧全局特征向量作为生成对抗网络的输入之一,而不是传统中将随机变量作为输入,从而学习到视频帧中目标信息,并学习从历史及当前视频帧信息到目标位置的映射关系,提升整体跟踪准确率;同时利用目标运动轨迹进行监督训练,能够极大地提升目标跟踪的准确率。
-
-
-
-