-
公开(公告)号:CN110188802B
公开(公告)日:2022-08-30
申请号:CN201910393189.8
申请日:2019-05-13
Applicant: 南京邮电大学
Abstract: 本发明公开了计算机视觉领域内的一种基于多层特征图融合的SSD目标检测算法,包括以下具体步骤:对图像进行预处理,将图像大小缩放成网络能够进行检测的尺寸;选取网络Darknet53对图像进行特征提取;在网络Darknet53的后面额外增加三个卷积层,融合Darknet53中后三层卷积层及增加的三层卷积层所产生的六层特征图;将该融合的特征图使用卷积进行下采样操作,产生金字塔特征层次结构;将网络Darknet53的后两层及额外增加三个卷积层产生的五层特征图进行上采样操作,然后与金字塔特征层次结构中尺寸对应的特征图进行融合;在这六层融合后的特征图上使用一系列卷积产生最终的检测结果,本发明极大的改善了目标检测的能力,可用于图像处理中。
-
公开(公告)号:CN110188802A
公开(公告)日:2019-08-30
申请号:CN201910393189.8
申请日:2019-05-13
Applicant: 南京邮电大学
IPC: G06K9/62
Abstract: 本发明公开了计算机视觉领域内的一种基于多层特征图融合的SSD目标检测算法,包括以下具体步骤:对图像进行预处理,将图像大小缩放成网络能够进行检测的尺寸;选取网络Darknet53对图像进行特征提取;在网络Darknet53的后面额外增加三个卷积层,融合Darknet53中后三层卷积层及增加的三层卷积层所产生的六层特征图;将该融合的特征图使用卷积进行下采样操作,产生金字塔特征层次结构;将网络Darknet53的后两层及额外增加三个卷积层产生的五层特征图进行上采样操作,然后与金字塔特征层次结构中尺寸对应的特征图进行融合;在这六层融合后的特征图上使用一系列卷积产生最终的检测结果,本发明极大的改善了目标检测的能力,可用于图像处理中。
-