-
公开(公告)号:CN110265039A
公开(公告)日:2019-09-20
申请号:CN201910475010.3
申请日:2019-06-03
Applicant: 南京邮电大学
Abstract: 本发明提出了一种基于字典学习和低秩矩阵分解的说话人识别方法,包括以下步骤:步骤1,对说话人音频进行预加重、分帧、加窗、端点检测等处理;步骤2,提取出对应每个说话人语句的MFCC特征,并训练GMM-UBM模型;步骤3,通过联合因子分析(JFA)估算全局差异空间矩阵T,全局差异空间因子w;步骤4,得到对应每个说话人语句的i-vector;步骤5,从训练集中提取M维度的i-vector并生成特征矩阵,根据训练集和测试集,对判别字典进行生成,得到的字典将作为i-vector后端处理和打分模块,为最终判别提供依据;适应字典学习准则的编码系数可以有效提升识别力,并通过结构化稀疏来进行最优分类。
-
公开(公告)号:CN110265039B
公开(公告)日:2021-07-02
申请号:CN201910475010.3
申请日:2019-06-03
Applicant: 南京邮电大学
Abstract: 本发明提出了一种基于字典学习和低秩矩阵分解的说话人识别方法,包括以下步骤:步骤1,对说话人音频进行预加重、分帧、加窗、端点检测等处理;步骤2,提取出对应每个说话人语句的MFCC特征,并训练GMM‑UBM模型;步骤3,通过联合因子分析(JFA)估算全局差异空间矩阵T,全局差异空间因子w;步骤4,得到对应每个说话人语句的i‑vector;步骤5,从训练集中提取M维度的i‑vector并生成特征矩阵,根据训练集和测试集,对判别字典进行生成,得到的字典将作为i‑vector后端处理和打分模块,为最终判别提供依据;适应字典学习准则的编码系数可以有效提升识别力,并通过结构化稀疏来进行最优分类。
-
公开(公告)号:CN107146601B
公开(公告)日:2020-07-24
申请号:CN201710224925.8
申请日:2017-04-07
Applicant: 南京邮电大学
Abstract: 本发明公开了一种用于说话人识别系统的后端i‑vector增强方法,该方法以深层神经网络为基础,结合深度神经网络在语音增强方面的应用,建立了一种用于说话人识别系统后端的i‑vector回归模型,得到一种适用于说话人识别系统的后端特征处理器。相比常规的前端语音增强算法,本发明在提高说话人识别系统的抗噪声性能的同时,又能优化说话人识别系统的结构模型,从而使说话人识别系统在噪声环境下的实用性得到有效提升。
-
公开(公告)号:CN107146601A
公开(公告)日:2017-09-08
申请号:CN201710224925.8
申请日:2017-04-07
Applicant: 南京邮电大学
Abstract: 本发明公开了一种用于说话人识别系统的后端i‑vector增强方法,该方法以深层神经网络为基础,结合深度神经网络在语音增强方面的应用,建立了一种用于说话人识别系统后端的i‑vector回归模型,得到一种适用于说话人识别系统的后端特征处理器。相比常规的前端语音增强算法,本发明在提高说话人识别系统的抗噪声性能的同时,又能优化说话人识别系统的结构模型,从而使说话人识别系统在噪声环境下的实用性得到有效提升。
-
-
-