-
公开(公告)号:CN106130689A
公开(公告)日:2016-11-16
申请号:CN201610416454.6
申请日:2016-06-13
Applicant: 南京邮电大学
CPC classification number: H04L1/0038 , H04L25/03165 , H04L27/001
Abstract: 本发明提出一种非线性自反馈混沌神经网络信号盲检测方法,使用非线性函数作为混沌神经网络的自反馈项,并将双Sigmoid函数运用到盲检测方法中,每次迭代时,首先进入混沌神经网络,然后再进入第二个激活函数。由于混沌神经网络具有可以避免陷于局部最优的优点,所以本发明继承了混沌神经网络这一特点,提高了盲检测性能;并且,与线性自反馈项的混沌神经网络相比,非线性自反馈混沌神经网络具有更为复杂的动力学行为,使网络的内部状态具有更为高效的混沌搜索能力和搜索效率。本发明方法,在同等条件下,抗噪性能优于传统的Hopfield信号盲检测方法。