-
公开(公告)号:CN114677311A
公开(公告)日:2022-06-28
申请号:CN202210205553.5
申请日:2022-03-03
Applicant: 南京邮电大学
IPC: G06T5/50 , G06T5/00 , G06T7/529 , G06V10/40 , G06V10/22 , G06V10/74 , G06V10/80 , G06V10/82 , G06V10/764 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于注意力机制的跨模态图像修复方法及装置,方法包括:选取多模态数据集,包括缺损图像数据、真实图像数据和触觉信号,将该数据集划分为训练集和测试集;设计一个基于注意力机制的跨模态图像修复AGVI模型,该模型包括可学习特征提取、转移特征注意力、相关嵌入学习和跨模态图像修复四个模块;利用训练集对跨模态图像修复AGVI模型进行训练,得到最优的跨模态图像修复AGVI模型结构及网络参数;利用测试集中的触觉信号和缺损图像数据,基于最优的跨模态图像修复AGVI模型进行跨模态修复图像。本发明通过引入注意力机制,精准定位图像缺损区域,并利用触觉信号中的关键信息修复预测、填充该区域,实现图像高质量、细粒度修复。
-
公开(公告)号:CN114677311B
公开(公告)日:2024-11-12
申请号:CN202210205553.5
申请日:2022-03-03
Applicant: 南京邮电大学
IPC: G06T5/50 , G06T5/73 , G06T5/60 , G06T7/529 , G06V10/40 , G06V10/22 , G06V10/74 , G06V10/80 , G06V10/82 , G06V10/764 , G06N3/0464 , G06N3/0455 , G06N3/088
Abstract: 本发明公开了一种基于注意力机制的跨模态图像修复方法及装置,方法包括:选取多模态数据集,包括缺损图像数据、真实图像数据和触觉信号,将该数据集划分为训练集和测试集;设计一个基于注意力机制的跨模态图像修复AGVI模型,该模型包括可学习特征提取、转移特征注意力、相关嵌入学习和跨模态图像修复四个模块;利用训练集对跨模态图像修复AGVI模型进行训练,得到最优的跨模态图像修复AGVI模型结构及网络参数;利用测试集中的触觉信号和缺损图像数据,基于最优的跨模态图像修复AGVI模型进行跨模态修复图像。本发明通过引入注意力机制,精准定位图像缺损区域,并利用触觉信号中的关键信息修复预测、填充该区域,实现图像高质量、细粒度修复。
-
公开(公告)号:CN113627482B
公开(公告)日:2023-08-18
申请号:CN202110776966.4
申请日:2021-07-09
Applicant: 南京邮电大学
IPC: G06V10/80 , G06V10/764 , G06V10/40 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于音频—触觉信号融合的跨模态图像生成方法,其步骤包括:1)选取包含音频数据、图像数据、触觉信号在内的多模态数据集,将该数据集划分为训练集和测试集;2)设计一个音频—触觉信号融合的跨模态图像生成模型,该模型包括深度语义融合、潜在空间学习和跨模态图像生成三个模块;3)利用训练集对该模型进行训练,得到最优参数;4)利用测试集中的触觉信号和音频数据,基于所训练好的模型,跨模态地生成对应的图像。本发明公开了一种基于音频—触觉信号融合的跨模态图像生成装置,本发明引入了强大的生成对抗机制,并且利用了标签信息,有效提高了图像生成的准确性和鲁棒性。
-
公开(公告)号:CN113627482A
公开(公告)日:2021-11-09
申请号:CN202110776966.4
申请日:2021-07-09
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于音频—触觉信号融合的跨模态图像生成方法,其步骤包括:1)选取包含音频数据、图像数据、触觉信号在内的多模态数据集,将该数据集划分为训练集和测试集;2)设计一个音频—触觉信号融合的跨模态图像生成模型,该模型包括深度语义融合、潜在空间学习和跨模态图像生成三个模块;3)利用训练集对该模型进行训练,得到最优参数;4)利用测试集中的触觉信号和音频数据,基于所训练好的模型,跨模态地生成对应的图像。本发明公开了一种基于音频—触觉信号融合的跨模态图像生成装置,本发明引入了强大的生成对抗机制,并且利用了标签信息,有效提高了图像生成的准确性和鲁棒性。
-
-
-