-
公开(公告)号:CN112995150B
公开(公告)日:2023-05-02
申请号:CN202110169984.6
申请日:2021-02-08
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于CNN‑LSTM融合的僵尸网络检测方法,获取网络数据集,对数据集进行预处理操作;构建检测模型,检测模型包括卷积神经网络模型CNN、长短时记忆网络模型LSTM、特征融合模块、全连接层,卷积神经网络模型CNN用于空间特征提取,长短时记忆网络模型LSTM用于时序特征提取,将提取得到的空间特征和时序特征在特征融合模块中进行特征融合,得到融合特征,融合特征经过全连接层输出检测结果;对检测模型进行训练,得到训练好的检测模型。本发明简化了人工提取特征等操作,不需要极强的先验知识,对僵尸网络检测具有良好的准确率。
-
公开(公告)号:CN112995150A
公开(公告)日:2021-06-18
申请号:CN202110169984.6
申请日:2021-02-08
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于CNN‑LSTM融合的僵尸网络检测方法,获取网络数据集,对数据集进行预处理操作;构建检测模型,检测模型包括卷积神经网络模型CNN、长短时记忆网络模型LSTM、特征融合模块、全连接层,卷积神经网络模型CNN用于空间特征提取,长短时记忆网络模型LSTM用于时序特征提取,将提取得到的空间特征和时序特征在特征融合模块中进行特征融合,得到融合特征,融合特征经过全连接层输出检测结果;对检测模型进行训练,得到训练好的检测模型。本发明简化了人工提取特征等操作,不需要极强的先验知识,对僵尸网络检测具有良好的准确率。
-