-
公开(公告)号:CN112818768B
公开(公告)日:2022-08-26
申请号:CN202110067137.9
申请日:2021-01-19
Applicant: 南京邮电大学
IPC: G06V20/52 , G06V20/40 , G06K9/62 , G06V10/774
Abstract: 本发明公开了一种基于元学习的变电站改扩建违章行为智能化识别方法,首先,采集图片,并构造难样本,完成场景的标注,形成小样本数据集,在ImageNet数据集上利用元学习方法预训练YOLOv5模型,并在采集的小样本数据集上精调得到最终的YOLOv5模型;其次,将训练好的YOLOv5模型部署到移动端,完成对作业人员、施工机具、送变电设备等检测物的识别;最后,根据施工作业要求自适应设置虚拟电子围栏,基于所设置的虚拟围栏进行人员机具的越界违章行为智能化识别并告警。本发明区别于传统的物理围栏及其他类型的虚拟电子围栏技术,不仅能有效识别地面违章行为,还能识别高空越界违章行为,且部署灵活,操作简单,实时性强,可重用性好。
-
公开(公告)号:CN112818768A
公开(公告)日:2021-05-18
申请号:CN202110067137.9
申请日:2021-01-19
Applicant: 南京邮电大学
Abstract: 本发明公开了一种基于元学习的变电站改扩建违章行为智能化识别方法,首先,采集图片,并构造难样本,完成场景的标注,形成小样本数据集,在ImageNet数据集上利用元学习方法预训练YOLOv5模型,并在采集的小样本数据集上精调得到最终的YOLOv5模型;其次,将训练好的YOLOv5模型部署到移动端,完成对作业人员、施工机具、送变电设备等检测物的识别;最后,根据施工作业要求自适应设置虚拟电子围栏,基于所设置的虚拟围栏进行人员机具的越界违章行为智能化识别并告警。本发明区别于传统的物理围栏及其他类型的虚拟电子围栏技术,不仅能有效识别地面违章行为,还能识别高空越界违章行为,且部署灵活,操作简单,实时性强,可重用性好。
-