融合主成分分析与双堆过滤的降维并行图像特征匹配算法

    公开(公告)号:CN117218389A

    公开(公告)日:2023-12-12

    申请号:CN202311202569.1

    申请日:2023-09-17

    Abstract: 本发明公开了一种融合主成分分析与双堆过滤的降维并行图像特征匹配算法,包括:采用主成分分析法将原始空间中的图像中的参考特征点集合和另一幅图像中的查询特征点集合投影至低维PCA空间;在PCA空间中,将参考特征点集合R′划分为w个子集;采用双堆过滤算法分别对w个子集中的参考特征点进行过滤,生成每个子集的k最近邻结果;将每个子集的k最近邻结果依次添加至最大堆中,调整最大堆使得最大堆内生成k最近邻结果。本发明采用主成分分析法将特征点集投影至低维空间,并采用计算成本更低的平方欧氏距离进行排名估计;使用双堆过滤算法对特征点进行提纯,保证了特征匹配的精度;采用了并行结构,提高了图像特征点的匹配速度。

    基于C-ATS算法的自动驾驶车辆用多传感器时间同步方法

    公开(公告)号:CN117155506B

    公开(公告)日:2024-11-15

    申请号:CN202311124983.5

    申请日:2023-09-03

    Abstract: 本发明公开了基于C‑ATS算法的自动驾驶车辆用多传感器时间同步方法,自动驾驶车辆上设有用于提供基准时间的时间服务器和若干个传感器;时间服务器与每个传感器之间通过周期性发送报文的形式进行交互;传感器记录时间服务器发送当前广播消息的本地时钟和传感器收到时间服务器发送的数据包的时间;根据C‑ATS算法计算滤波比例因子,通过滤波比例因子计算漂移修正系数和偏移修正系数;通过漂移修正系数和偏移修正系数对传感器的本地时间进行修正。本发明设计了基于ATS改进权重的C‑ATS算法,对时间服务器与自动驾驶车辆传感器时钟进行协同同步,克服非对称随机通讯时间延迟对时间同步精度造成的影响,实现了多传感器时间精度同步。

    基于C-ATS算法的自动驾驶车辆用多传感器时间同步方法

    公开(公告)号:CN117155506A

    公开(公告)日:2023-12-01

    申请号:CN202311124983.5

    申请日:2023-09-03

    Abstract: 本发明公开了基于C‑ATS算法的自动驾驶车辆用多传感器时间同步方法,自动驾驶车辆上设有用于提供基准时间的时间服务器和若干个传感器;时间服务器与每个传感器之间通过周期性发送报文的形式进行交互;传感器记录时间服务器发送当前广播消息的本地时钟和传感器收到时间服务器发送的数据包的时间;根据C‑ATS算法计算滤波比例因子,通过滤波比例因子计算漂移修正系数和偏移修正系数;通过漂移修正系数和偏移修正系数对传感器的本地时间进行修正。本发明设计了基于ATS改进权重的C‑ATS算法,对时间服务器与自动驾驶车辆传感器时钟进行协同同步,克服非对称随机通讯时间延迟对时间同步精度造成的影响,实现了多传感器时间精度同步。

    融合主成分分析与双堆过滤的降维并行图像特征匹配算法

    公开(公告)号:CN117218389B

    公开(公告)日:2024-10-25

    申请号:CN202311202569.1

    申请日:2023-09-17

    Abstract: 本发明公开了一种融合主成分分析与双堆过滤的降维并行图像特征匹配算法,包括:采用主成分分析法将原始空间中的图像中的参考特征点集合和另一幅图像中的查询特征点集合投影至低维PCA空间;在PCA空间中,将参考特征点集合R′划分为w个子集;采用双堆过滤算法分别对w个子集中的参考特征点进行过滤,生成每个子集的k最近邻结果;将每个子集的k最近邻结果依次添加至最大堆中,调整最大堆使得最大堆内生成k最近邻结果。本发明采用主成分分析法将特征点集投影至低维空间,并采用计算成本更低的平方欧氏距离进行排名估计;使用双堆过滤算法对特征点进行提纯,保证了特征匹配的精度;采用了并行结构,提高了图像特征点的匹配速度。

Patent Agency Ranking