-
公开(公告)号:CN113110592B
公开(公告)日:2022-09-23
申请号:CN202110488468.X
申请日:2021-05-06
Applicant: 南京大学
IPC: G05D1/10
Abstract: 本发明公开一种无人机避障与路径规划方法,结合蒙特卡洛树搜索与对比强化学习算法,克服GPS在特定环境中信号不足的问题,实现无人机在复杂环境中避障与路径选择的功能。包括以下几个步骤:(1)构造环境仿真模拟器。(2)无人机在模拟器中获得观测信息,利用深度神经网络处理观测信息。(3)利用蒙特卡洛树搜索进行粗粒度的路径规划,生成无人机前进路径中的阶段性目标点,用于后续强化学习算法的训练。(4)利用强化学习学习无人机精细的控制策略和细粒度的路径规划。(5)基于对比学习加速无人机训练。本发明方法使得无人机在难度系数高,不确定因素大的复杂环境中有自主决策能力,在相当程度上可应对突发情况,完成特定任务。
-
公开(公告)号:CN114003393B
公开(公告)日:2022-06-14
申请号:CN202111639857.4
申请日:2021-12-30
Applicant: 南京大学
Abstract: 本发明公开了一种基于双层树的提高集成型自动机器学习运行性能的方法和系统,对于模型选择和超参数调优两个过程采用了双层树式的逻辑关系。通过极限区域上置信界算法对双层树式的上下两层进行迭代计算。根据机器学习模型库中各模型的初始化分数,自适应地将各模型分配到合适的线程上,有前景的模型将得到更多的初始线程分配。以不同模型和不同超参数配置下的评估指标的分数和运行时间为依据,选择其中若干个模型,基于选中的模型生成集成模型。本发明使自动机器学习方法可以在相同的计算资源下得到更好的最终效果。
-
公开(公告)号:CN113281999A
公开(公告)日:2021-08-20
申请号:CN202110441572.3
申请日:2021-04-23
Applicant: 南京大学
Abstract: 本发明公开一种基于强化学习和迁移学习的无人机自主飞行训练方法(1)创建无人机仿真模拟器环境;(2)构建基于深度学习的环境转移模型,并随机初始化其中的映射;(3)构建强化学习的A3C算法,并随机初始化其飞行策略;(4)构建基于深度学习的环境逆转移模型;(5)收集无人机操作员和策略在现实环境下操作无人机进行飞行得到的飞行数据;(6)基于现实飞行数据,更新环境转移模型;(7)使用和进行基于动作校正的迁移学习,校正飞行策略,并在模拟器执行得到模拟飞行数据;(8)基于模拟飞行数据,使用A3C算法更新飞行策略,同时更新环境逆转移模型。直至策略收敛。最终得到策略作为的现实无人机的初始飞行策略。
-
公开(公告)号:CN113110592A
公开(公告)日:2021-07-13
申请号:CN202110488468.X
申请日:2021-05-06
Applicant: 南京大学
IPC: G05D1/10
Abstract: 本发明公开一种无人机避障与路径规划方法,结合蒙特卡洛树搜索与对比强化学习算法,克服GPS在特定环境中信号不足的问题,实现无人机在复杂环境中避障与路径选择的功能。包括以下几个步骤:(1)构造环境仿真模拟器。(2)无人机在模拟器中获得观测信息,利用深度神经网络处理观测信息。(3)利用蒙特卡洛树搜索进行粗粒度的路径规划,生成无人机前进路径中的阶段性目标点,用于后续强化学习算法的训练。(4)利用强化学习学习无人机精细的控制策略和细粒度的路径规划。(5)基于对比学习加速无人机训练。本发明方法使得无人机在难度系数高,不确定因素大的复杂环境中有自主决策能力,在相当程度上可应对突发情况,完成特定任务。
-
公开(公告)号:CN113282721B
公开(公告)日:2023-07-21
申请号:CN202110464526.5
申请日:2021-04-28
Applicant: 南京大学
IPC: G06F16/332 , G06F16/33 , G06F16/338 , G06N3/045
Abstract: 本申请提供了一种基于网络结构搜索的视觉问答方法,包括如下步骤:采用第一人工神经网络模型对原始图片进行特征提取;采用第二人工神经网络模型对文本信息进行特征提取;待搜索的网络结构框架为编码‑解码器框架,定义三种搜索算子供框架网络搜索,所述搜索算子的输入为基于所述原始图片或/和所述文本信息所提取的图像特征或文本特征;使用基于梯度交替优化策略搜索网络结构的架构权重和算子的操作权重;使搜索网络按照多分类的方法输出候选词向量,并选择概率最大的词向量作为答案输出。本申请的有益之处在于提供了一种能在更大的空间搜索出更好的效果的基于网络结构搜索的视觉问答方法。
-
公开(公告)号:CN113467248A
公开(公告)日:2021-10-01
申请号:CN202110828311.7
申请日:2021-07-22
Applicant: 南京大学
IPC: G05B13/04
Abstract: 本发明公开一种基于强化学习的无人机传感器故障时容错控制方法,测定无人机各项物理常数,搭建无人机环境模拟器,在训练时随机设置传感器故障干扰无人机控制并使用DDPG算法训练无人机控制策略模型,逐步增加无人机故障种类并将稳定表现的策略收集到容错控制策略候选池中,在仿真环境随机故障测试后,得到最优的容错控制策略;在推理阶段,对于训练好的策略模型,基于策略网络输出交给无人机执行。本发明在仿真环境中模拟无人机不同的传感器故障组合,在策略与环境交互时,保证固定比例的无故障样本数据的存在,使得强化学习可以同时学习到传感器故障时和非故障时的飞行策略,使得无人机传感器故障时的容错控制更加鲁棒,高效。
-
公开(公告)号:CN113282721A
公开(公告)日:2021-08-20
申请号:CN202110464526.5
申请日:2021-04-28
Applicant: 南京大学
IPC: G06F16/332 , G06F16/33 , G06F16/338 , G06N3/04
Abstract: 本申请提供了一种基于网络结构搜索的视觉问答方法,包括如下步骤:采用第一人工神经网络模型对原始图片进行特征提取;采用第二人工神经网络模型对文本信息进行特征提取;待搜索的网络结构框架为编码‑解码器框架,定义三种搜索算子供框架网络搜索,所述搜索算子的输入为基于所述原始图片或/和所述文本信息所提取的图像特征或文本特征;使用基于梯度交替优化策略搜索网络结构的架构权重和算子的操作权重;使搜索网络按照多分类的方法输出候选词向量,并选择概率最大的词向量作为答案输出。本申请的有益之处在于提供了一种能在更大的空间搜索出更好的效果的基于网络结构搜索的视觉问答方法。
-
公开(公告)号:CN113110550B
公开(公告)日:2022-09-23
申请号:CN202110442229.0
申请日:2021-04-23
Applicant: 南京大学
Abstract: 本发明公开一种基于强化学习与网络模型蒸馏的无人机飞行控制方法,构建无人机环境模拟器;基于强化学习算法,在不同场景中进行大规模训练,得到最优控制策略,以此构建无人机飞行控制系统;基于网络模型蒸馏技术,通过教师网络和学生网络计算辅助控制信息,量化当前场景与训练场景的差异,展示强化学习控制策略对当前场景的适应能力,以此构建无人机辅助控制系统。本发明基于强化学习算法,通过在模拟器中大规模训练,使无人机自主学习控制策略,构建无人机控制系统;基于网络模型蒸馏技术,通过量化当前场景与训练场景的差异,展示强化学习控制策略对当前场景的适应程度,以此规避陌生场景,减少安全风险。
-
公开(公告)号:CN113282100A
公开(公告)日:2021-08-20
申请号:CN202110464589.0
申请日:2021-04-28
Applicant: 南京大学
Abstract: 本申请公开了一种基于强化学习的无人机对抗博弈训练控制方法,包括如下步骤:使主智能体与对手池中所有对手对战并统计所述主智能体的胜率;判断所述主智能体的胜率是否满足预设要求;如果所述主智能体的胜率满足预设要求,则根据所述主智能体的胜率选择对抗对手;使主智能体与所述对抗对手训练直至所述主智能体策略收敛。本申请的有益之处在于。本申请的有益之处在于提供了一种行之有效的基于强化学习的无人机对抗博弈训练控制方法从而使主智能体具有更强学习能力。
-
公开(公告)号:CN113276852A
公开(公告)日:2021-08-20
申请号:CN202110375328.1
申请日:2021-04-08
Applicant: 南京大学
Abstract: 本发明公开一种基于最大熵强化学习框架的无人驾驶车道保持方法,包括:(1)创建无人车仿真道路环境;设置环境车行驶策略和行人的运动模型,设计奖励函数以及碰撞检测条件;(2)利用深度神经网络近似状态值函数、动作值函数以及策略,并初始化网络参数;(3)获得无人车初始状态,使其与环境交互,收集数据,并存储到缓冲池;(4)对状态值函数网络、动作值函数网络以及策略网络进行更新;(5)对目标值函数网络进行更新,直到策略网络将近收敛;(6)将状态值网络优化目标中熵项系数置零,继续训练直到策略网络完全收敛;(7)对于训练好的策略模型,根据网络输出的动作概率分布,选择概率值最大的动作给无人车执行。
-
-
-
-
-
-
-
-
-