-
公开(公告)号:CN117933316B
公开(公告)日:2024-05-31
申请号:CN202410339570.7
申请日:2024-03-25
Applicant: 南京大学
IPC: G06N3/047 , G06N3/0464 , G06Q10/04 , G06Q50/06
Abstract: 本发明公开了一种基于可解释贝叶斯卷积网络的地下水位概率预报方法,利用前沿时序预报模型和贝叶斯方法实现地下水位可靠概率预报,再利用解释算法识别量化各个输入特征对地下水位预报结果的贡献度。本发明能够基于一维时间序列的周期特征,将一维时间序列转换到二维空间上,再通过卷积网络提取序列的周期特征,从而实现地下水位可靠预报。本发明融合了蒙特卡洛丢弃贝叶斯方法和SHAP可解释性方法,量化了预报结果的不确定性和输入特征对预报结果的贡献度,实现了地下水位概率和可解释预报。基于地下水位监测数据和气象数据,本发明能够实现地下水位未来一个月变化的可靠预报,为地下水资源优化配置和生态环境保护提供决策支撑。
-
公开(公告)号:CN119830962A
公开(公告)日:2025-04-15
申请号:CN202510316375.7
申请日:2025-03-18
Applicant: 南京大学
IPC: G06N3/047 , G06N3/08 , G06F18/214 , G06F18/21
Abstract: 本发明公开了基于贝叶斯深度学习的区域地下水埋深分布估算方法,本发明利用离散观测井位数据,结合降水、蒸散发、温度、坡度、距离最近地表水体距离、土壤类型、土地利用类型、地下水储量等多源数据作为输入因子,通过贝叶斯深度学习模型建立地下水埋深与输入因子间的非线性映射关系。本发明首先利用观测点位处的实测数据训练并验证模型,然后基于研究区输入因子数据估算得到区域地下水埋深分布,可有效解决传统地下水监测网络覆盖不足的问题,并能够以较高的空间分辨率刻画区域地下水埋深分布特征,为区域地下水资源可持续利用和生态保护提供科学支持。本发明方法具有通用性,适用于不同区域和多种数据条件下的地下水埋深预测。
-
公开(公告)号:CN117933316A
公开(公告)日:2024-04-26
申请号:CN202410339570.7
申请日:2024-03-25
Applicant: 南京大学
IPC: G06N3/047 , G06N3/0464 , G06Q10/04 , G06Q50/06
Abstract: 本发明公开了一种基于可解释贝叶斯卷积网络的地下水位概率预报方法,利用前沿时序预报模型和贝叶斯方法实现地下水位可靠概率预报,再利用解释算法识别量化各个输入特征对地下水位预报结果的贡献度。本发明能够基于一维时间序列的周期特征,将一维时间序列转换到二维空间上,再通过卷积网络提取序列的周期特征,从而实现地下水位可靠预报。本发明融合了蒙特卡洛丢弃贝叶斯方法和SHAP可解释性方法,量化了预报结果的不确定性和输入特征对预报结果的贡献度,实现了地下水位概率和可解释预报。基于地下水位监测数据和气象数据,本发明能够实现地下水位未来一个月变化的可靠预报,为地下水资源优化配置和生态环境保护提供决策支撑。
-
-